These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 19865733)

  • 1. Multi-curvature liquid meniscus in a nanochannel: evidence of interplay between intermolecular and surface forces.
    Kim P; Kim HY; Kim JK; Reiter G; Suh KY
    Lab Chip; 2009 Nov; 9(22):3255-60. PubMed ID: 19865733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of liquid menisci in flexible nanochannels.
    van Honschoten JW; Escalante M; Tas NR; Elwenspoek M
    J Colloid Interface Sci; 2009 Jan; 329(1):133-9. PubMed ID: 18947834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric field enhanced spreading of partially wetting thin liquid films.
    Bhaumik SK; Chakraborty M; Ghosh S; Chakraborty S; DasGupta S
    Langmuir; 2011 Nov; 27(21):12951-9. PubMed ID: 21910451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Filling kinetics of liquids in nanochannels as narrow as 27 nm by capillary force.
    Han A; Mondin G; Hegelbach NG; de Rooij NF; Staufer U
    J Colloid Interface Sci; 2006 Jan; 293(1):151-7. PubMed ID: 16023663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wetting: Inverse Dynamic Problem and Equations for Microscopic Parameters.
    Voinov OV
    J Colloid Interface Sci; 2000 Jun; 226(1):5-15. PubMed ID: 11401339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the effect of surface forces on the equilibrium liquid profile of a capillary meniscus.
    Kuchin IV; Matar OK; Craster RV; Starov VM
    Soft Matter; 2014 Aug; 10(32):6024-37. PubMed ID: 24998938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscosity and Wetting Property of Water Confined in Extended Nanospace Simultaneously Measured from Highly-Pressurized Meniscus Motion.
    Li L; Kazoe Y; Mawatari K; Sugii Y; Kitamori T
    J Phys Chem Lett; 2012 Sep; 3(17):2447-52. PubMed ID: 26292131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bubble snap-off and capillary-back pressure during counter-current spontaneous imbibition into model pores.
    Unsal E; Mason G; Morrow NR; Ruth DW
    Langmuir; 2009 Apr; 25(6):3387-95. PubMed ID: 19228030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capillarity at the nanoscale.
    van Honschoten JW; Brunets N; Tas NR
    Chem Soc Rev; 2010 Mar; 39(3):1096-114. PubMed ID: 20179827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control.
    Oh YJ; Garcia AL; Petsev DN; Lopez GP; Brueck SR; Ivory CF; Han SM
    Lab Chip; 2009 Jun; 9(11):1601-8. PubMed ID: 19458869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticles in nematic liquid crystals: interactions with nanochannels.
    Hung FR; Gettelfinger BT; Koenig GM; Abbott NL; de Pablo JJ
    J Chem Phys; 2007 Sep; 127(12):124702. PubMed ID: 17902926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theory of slope-dependent disjoining pressure with application to Lennard-Jones liquid films.
    Yi T; Wong H
    J Colloid Interface Sci; 2007 Sep; 313(2):579-91. PubMed ID: 17570389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined effects of surface roughness and wetting characteristics on the moving contact line in microchannel flows.
    Chakraborty D; Dingari NN; Chakraborty S
    Langmuir; 2012 Dec; 28(48):16701-10. PubMed ID: 23131003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics of immiscible fluids in chemically patterned nanochannels.
    Cieplak M; Banavar JR
    J Chem Phys; 2008 Mar; 128(10):104709. PubMed ID: 18345921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water slug formation and motion in gas flow channels: the effects of geometry, surface wettability, and gravity.
    Cheah MJ; Kevrekidis IG; Benziger JB
    Langmuir; 2013 Aug; 29(31):9918-34. PubMed ID: 23876035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross stream chain migration in nanofluidic channels: Effects of chain length, channel height, and chain concentration.
    Kohale SC; Khare R
    J Chem Phys; 2009 Mar; 130(10):104904. PubMed ID: 19292556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical solutions for partially wetting two-dimensional droplets.
    Gomba JM; Homsy GM
    Langmuir; 2009 May; 25(10):5684-91. PubMed ID: 19435290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport, phase transitions, and wetting in micro/nanochannels: a phase field/DDFT approach.
    Mickel W; Joly L; Biben T
    J Chem Phys; 2011 Mar; 134(9):094105. PubMed ID: 21384948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution titration by wall deprotonation during capillary filling of silicon oxide nanochannels.
    Janssen KG; Hoang TH; Floris J; de Vries J; Tas NR; Eijkel JC; Hankemeier T
    Anal Chem; 2008 Nov; 80(21):8095-101. PubMed ID: 18826247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relation between shape of liquid-gas interface and evolution of buoyantly unstable three-dimensional chemical fronts.
    Sebestíková L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033023. PubMed ID: 24125360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.