These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 19865840)

  • 1. Influence of power-law rheology on cell injury during microbubble flows.
    Dailey HL; Ghadiali SN
    Biomech Model Mechanobiol; 2010 Jun; 9(3):263-79. PubMed ID: 19865840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image-based finite element modeling of alveolar epithelial cell injury during airway reopening.
    Dailey HL; Ricles LM; Yalcin HC; Ghadiali SN
    J Appl Physiol (1985); 2009 Jan; 106(1):221-32. PubMed ID: 19008489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A power-law rheology-based finite element model for single cell deformation.
    Zhou EH; Xu F; Quek ST; Lim CT
    Biomech Model Mechanobiol; 2012 Sep; 11(7):1075-84. PubMed ID: 22307682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of airway diameter and cell confluence on epithelial cell injury in an in vitro model of airway reopening.
    Yalcin HC; Perry SF; Ghadiali SN
    J Appl Physiol (1985); 2007 Nov; 103(5):1796-807. PubMed ID: 17673567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epithelial cell deformation during surfactant-mediated airway reopening: a theoretical model.
    Naire S; Jensen OE
    J Appl Physiol (1985); 2005 Aug; 99(2):458-71. PubMed ID: 15802368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computer model for reshaping of cells in epithelia due to in-plane deformation and annealing.
    Wayne Brodland G; Veldhuis JH
    Comput Methods Biomech Biomed Engin; 2003 Apr; 6(2):89-98. PubMed ID: 12745423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening.
    Bilek AM; Dee KC; Gaver DP
    J Appl Physiol (1985); 2003 Feb; 94(2):770-83. PubMed ID: 12433851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure gradient, not exposure duration, determines the extent of epithelial cell damage in a model of pulmonary airway reopening.
    Kay SS; Bilek AM; Dee KC; Gaver DP
    J Appl Physiol (1985); 2004 Jul; 97(1):269-76. PubMed ID: 15004001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows.
    Zhang J; Johnson PC; Popel AS
    Phys Biol; 2007 Nov; 4(4):285-95. PubMed ID: 18185006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using a CFD model to understand the fluid dynamics promoting E. coli breakage in a high-pressure homogenizer.
    Miller J; Rogowski M; Kelly W
    Biotechnol Prog; 2002; 18(5):1060-7. PubMed ID: 12363358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbubble expansion in a flexible tube.
    Ye T; Bull JL
    J Biomech Eng; 2006 Aug; 128(4):554-63. PubMed ID: 16813446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nonlinear mechanical response of the red blood cell.
    Yoon YZ; Kotar J; Yoon G; Cicuta P
    Phys Biol; 2008 Aug; 5(3):036007. PubMed ID: 18698116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three dimensional modeling of the cerebrospinal fluid dynamics and brain interactions in the aqueduct of sylvius.
    Fin L; Grebe R
    Comput Methods Biomech Biomed Engin; 2003 Jun; 6(3):163-70. PubMed ID: 12888428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epithelium damage and protection during reopening of occluded airways in a physiologic microfluidic pulmonary airway model.
    Tavana H; Zamankhan P; Christensen PJ; Grotberg JB; Takayama S
    Biomed Microdevices; 2011 Aug; 13(4):731-42. PubMed ID: 21487664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell mechanics of alveolar epithelial cells (AECs) and macrophages (AMs).
    Féréol S; Fodil R; Pelle G; Louis B; Isabey D
    Respir Physiol Neurobiol; 2008 Nov; 163(1-3):3-16. PubMed ID: 18565804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The epitheliome: agent-based modelling of the social behaviour of cells.
    Walker DC; Southgate J; Hill G; Holcombe M; Hose DR; Wood SM; Mac Neil S; Smallwood RH
    Biosystems; 2004; 76(1-3):89-100. PubMed ID: 15351133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscoelastic fluid description of bacterial biofilm material properties.
    Klapper I; Rupp CJ; Cargo R; Purvedorj B; Stoodley P
    Biotechnol Bioeng; 2002 Nov; 80(3):289-96. PubMed ID: 12226861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Power-law rheology analysis of cells undergoing micropipette aspiration.
    Zhou EH; Quek ST; Lim CT
    Biomech Model Mechanobiol; 2010 Oct; 9(5):563-72. PubMed ID: 20179987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A finite element model predicts the mechanotransduction response of tendon cells to cyclic tensile loading.
    Lavagnino M; Arnoczky SP; Kepich E; Caballero O; Haut RC
    Biomech Model Mechanobiol; 2008 Oct; 7(5):405-16. PubMed ID: 17901992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational study of leukocyte adhesion and its effect on flow pattern in microvessels.
    Pappu V; Doddi SK; Bagchi P
    J Theor Biol; 2008 Sep; 254(2):483-98. PubMed ID: 18597788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.