These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 19866642)

  • 21. The Effect of Light on Plastid Differentiation, Chlorophyll Biosynthesis, and Essential Oil Composition in Rosemary (
    Böszörményi A; Dobi A; Skribanek A; Pávai M; Solymosi K
    Front Plant Sci; 2020; 11():196. PubMed ID: 32194595
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Isolation and properties of the pigment-protein complex (protochlorophyllide - holochrome) from etiolated leaves of corn sprouts].
    Nikolaeva LF; Pivovarova LV; Kazakova AS; Kononenko AA
    Biokhimiia; 1981 Jan; 46(1):22-8. PubMed ID: 7248372
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The formation of chlorophyll from chlorophyllide in leaves containing proplastids is a four-step process.
    Schoefs B; Bertrand M
    FEBS Lett; 2000 Dec; 486(3):243-6. PubMed ID: 11119711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Developmental Physiology of Bean Leaf Plastids II. Negative Contrast Electron Microscopy of Tubular Membranes in Prolamellar Bodies.
    Kahn A
    Plant Physiol; 1968 Nov; 43(11):1769-80. PubMed ID: 16656970
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relationship between Photoconvertible and Nonphotoconvertible Protochlorophyllides.
    Murray AE; Klein AO
    Plant Physiol; 1971 Oct; 48(4):383-8. PubMed ID: 16657804
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accumulation of delta-Aminolevulinic Acid and Its Relation to Chlorophyll Synthesis and Development of Plastid Structure in Greening Leaves.
    Klein S; Harel E; Ne'eman E; Katz E; Meller E
    Plant Physiol; 1975 Oct; 56(4):486-96. PubMed ID: 16659331
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Induction of porphyrin synthesis in etiolated bean leaves by chelators of iron.
    Duggan J; Gassman M
    Plant Physiol; 1974 Feb; 53(2):206-15. PubMed ID: 16658677
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chlorophyll Formation in Greening Bean Leaves during the Early Stages.
    Mathis P; Sauer K
    Plant Physiol; 1973 Jan; 51(1):115-9. PubMed ID: 16658271
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of etioplast pigment-protein complexes, inner membrane architecture, and protochlorophyllide a chemical heterogeneity by light-dependent NADPH:protochlorophyllide oxidoreductases A and B.
    Franck F; Sperling U; Frick G; Pochert B; van Cleve B; Apel K; Armstrong GA
    Plant Physiol; 2000 Dec; 124(4):1678-96. PubMed ID: 11115885
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of inhibitors of protein synthesis on the differentiation of plastids in etiolated bean seedlings.
    Wrischer M
    Planta; 1967 Dec; 73(4):324-7. PubMed ID: 24553743
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formation of prolamellar-body-like ultrastructures in etiolated cyanobacterial cells overexpressing light-dependent protochlorophyllide oxidoreductase in Leptolyngbya boryana.
    Yamamoto H; Kojima-Ando H; Ohki K; Fujita Y
    J Gen Appl Microbiol; 2020 Jun; 66(2):129-139. PubMed ID: 32238622
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chloroplast biogenesis 88. Protochlorophyllide b occurs in green but not in etiolated plants.
    Kolossov VL; Rebeiz CA
    J Biol Chem; 2003 Dec; 278(50):49675-8. PubMed ID: 14594820
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of the photoreduction of protochlorophyllide to chlorophyllide in leaves and cotyledons from dark-grown bean as a function of age.
    Schoefs B; Garnir HP; Bertrand M
    Photosynth Res; 1994 Sep; 41(3):405-17. PubMed ID: 24310155
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The sites of photoconversion of protochlorophyllide to chlorophyllide in barley seedlings.
    Süzer S; Sauer K
    Plant Physiol; 1971 Jul; 48(1):60-3. PubMed ID: 16657736
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plastid development in albescent maize.
    Troxler RF; Lester R; Craft FO; Albright JT
    Plant Physiol; 1969 Nov; 44(11):1609-18. PubMed ID: 16657248
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transformation of plastids in soil-shaded lowermost hypocotyl segments of bean (Phaseolus vulgaris) during a 60-day cultivation period.
    Kakuszi A; Solymosi K; Böddi B
    Physiol Plant; 2017 Apr; 159(4):483-491. PubMed ID: 27734513
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organization of protochlorophyllide oxidoreductase in prolamellar bodies isolated from etiolated carotenoid-deficient wheat leaves as revealed by fluorescence probes.
    Denev ID; Yahubyan GT; Minkov IN; Sundqvist C
    Biochim Biophys Acta; 2005 Oct; 1716(2):97-103. PubMed ID: 16229815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Etiolation symptoms in sunflower (Helianthus annuus) cotyledons partially covered by the pericarp of the achene.
    Solymosi K; Vitányi B; Hideg E; Böddi B
    Ann Bot; 2007 May; 99(5):857-67. PubMed ID: 17452377
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phytylation of chlorophyllide and prolamellar-body transformation in etiolated peas.
    Treffry T
    Planta; 1970 Sep; 91(3):279-84. PubMed ID: 24500057
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Induction of delta-Aminolevulinic Acid Formation in Etiolated Maize Leaves Controlled by Two Light Systems.
    Klein S; Katz E; Neeman E
    Plant Physiol; 1977 Sep; 60(3):335-8. PubMed ID: 16660088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.