These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 1987091)

  • 1. Resting voltage measurements of the rabbit corneal endothelium using patch-current clamp techniques.
    Watsky MA; Rae JL
    Invest Ophthalmol Vis Sci; 1991 Jan; 32(1):106-11. PubMed ID: 1987091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of nitric oxide donors, S-nitroso-L-cysteine and sodium nitroprusside, on the whole-cell and single channel currents in single myocytes of the guinea-pig proximal colon.
    Lang RJ; Watson MJ
    Br J Pharmacol; 1998 Feb; 123(3):505-17. PubMed ID: 9504392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for preparing a viable corneal endothelial layer, completely denuded of overlying stroma.
    Soong H; Fischbarg J; Iwamoto T
    Invest Ophthalmol Vis Sci; 1978 Nov; 17(11):1113-7. PubMed ID: 359500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion channel involvement in the temperature-sensitive response of the rabbit corneal endothelial cell resting membrane potential.
    Watsky MA; Rae JL
    J Membr Biol; 1993 Jul; 135(1):61-71. PubMed ID: 7692062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The resting potential of mouse Leydig cells: role of an electrogenic Na+/K+ pump.
    del Corsso C; Varanda WA
    J Membr Biol; 2003 Jan; 191(2):123-31. PubMed ID: 12533779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of endothelial function after vitrification of cornea at -110 degrees C.
    Armitage WJ; Hall SC; Routledge C
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2160-4. PubMed ID: 12091411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of single cells isolated from the atrioventricular node of the adult guinea-pig heart.
    Yuill KH; Hancox JC
    Pflugers Arch; 2002 Dec; 445(3):311-20. PubMed ID: 12466932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the Na+/K+-ATPase in regulating the membrane potential in rat peritoneal mast cells.
    Friis UG; Praetorius HA; Knudsen T; Johansen T
    Br J Pharmacol; 1997 Oct; 122(4):599-604. PubMed ID: 9375953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of voltage-gated, whole-cell ionic currents from conjunctival epithelial cells.
    Watsky MA
    Invest Ophthalmol Vis Sci; 1998 Feb; 39(2):351-7. PubMed ID: 9477993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of the pyrethroid fenvalerate with nerve membrane sodium channels: temperature dependence and mechanism of depolarization.
    Salgado VL; Herman MD; Narahashi T
    Neurotoxicology; 1989; 10(1):1-14. PubMed ID: 2549473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the resting potential of rabbit pulmonary artery myocytes by a low threshold, O2-sensing potassium current.
    Osipenko ON; Evans AM; Gurney AM
    Br J Pharmacol; 1997 Apr; 120(8):1461-70. PubMed ID: 9113366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of temperature on the activation of myocardial KATP channel in guinea pig ventricular myocytes: a pilot study by whole cell patch clamp recording.
    Jin SQ; Niu LJ; Deng CY; Yao ZB; Zhou YJ
    Chin Med J (Engl); 2006 Oct; 119(20):1721-6. PubMed ID: 17097020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of pH on the potassium current in rabbit corneal epithelial cells.
    Rich A; Bartling C; Farrugia G; Rae JL
    Am J Physiol; 1997 Feb; 272(2 Pt 1):C744-53. PubMed ID: 9124319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corneal membrane water permeability as a function of temperature.
    Green K; Downs SJ
    Invest Ophthalmol; 1976 Apr; 15(4):304-7. PubMed ID: 1262161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dye and electrical coupling between cells of the rabbit corneal endothelium.
    Rae JL; Lewno AW; Cooper K; Gates P
    Curr Eye Res; 1989 Aug; 8(8):859-69. PubMed ID: 2791630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rabbit corneal endothelial cell membrane potential.
    Wigham CG; Green K; Hodson S
    Ophthalmic Physiol Opt; 1993 Jul; 13(3):305-8. PubMed ID: 8265174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical properties of rabbit corneal endothelium as determined from impedance measurements.
    Lim JJ; Fischbarg J
    Biophys J; 1981 Dec; 36(3):677-95. PubMed ID: 7326329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A near-zero membrane potential in transporting corneal endothelial cells of rabbit.
    Hodson S; Wigham C
    J Physiol; 1989 May; 412():365-74. PubMed ID: 2600836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic component in the epithelial intracellular potential of rabbit cornea.
    Akaike N; Kiyohara T
    Pflugers Arch; 1977 May; 369(1):33-7. PubMed ID: 560006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viability assessment of primo-node slices from organ surface primo-vascular tissues in rats.
    Han TH; Lim CJ; Choi JH; Lee SY; Ryu PD
    J Acupunct Meridian Stud; 2010 Dec; 3(4):241-8. PubMed ID: 21185538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.