These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 19872573)

  • 1. A STUDY OF THE BACTERICIDAL ACTION OF ULTRA VIOLET LIGHT : III. THE ABSORPTION OF ULTRA VIOLET LIGHT BY BACTERIA.
    Gates FL
    J Gen Physiol; 1930 Sep; 14(1):31-42. PubMed ID: 19872573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A STUDY OF THE BACTERICIDAL ACTION OF ULTRA VIOLET LIGHT : II. THE EFFECT OF VARIOUS ENVIRONMENTAL FACTORS AND CONDITIONS.
    Gates FL
    J Gen Physiol; 1929 Nov; 13(2):249-60. PubMed ID: 19872522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A STUDY OF THE BACTERICIDAL ACTION OF ULTRA VIOLET LIGHT : I. THE REACTION TO MONOCHROMATIC RADIATIONS.
    Gates FL
    J Gen Physiol; 1929 Nov; 13(2):231-48. PubMed ID: 19872521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PROPERTIES OF THE CAUSATIVE AGENT OF A CHICKEN TUMOR : II. THE INACTIVATION OF THE TUMOR-PRODUCING AGENT BY MONOCHROMATIC ULTRA-VIOLET LIGHT.
    Sturm E; Gates FL; Murphy JB
    J Exp Med; 1932 Feb; 55(3):441-4. PubMed ID: 19870002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RESULTS OF IRRADIATING SACCHAROMYCES WITH MONOCHROMATIC ULTRA-VIOLET LIGHT : I. MORPHOLOGICAL AND RESPIRATORY CHANGES.
    Oster RH
    J Gen Physiol; 1934 Sep; 18(1):71-88. PubMed ID: 19872826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RESULTS OF IRRADIATING SACCHAROMYCES WITH MONOCHROMATIC ULTRA-VIOLET LIGHT : II. THE INFLUENCE OF MODIFYING FACTORS.
    Oster RH
    J Gen Physiol; 1934 Nov; 18(2):243-50. PubMed ID: 19872838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RESULTS OF IRRADIATING SACCHAROMYCES WITH MONOCHROMATIC ULTRA-VIOLET LIGHT : III. THE ABSORPTION OF ULTRA-VIOLET ENERGY BY YEAST.
    Oster RH
    J Gen Physiol; 1934 Nov; 18(2):251-4. PubMed ID: 19872839
    [No Abstract]   [Full Text] [Related]  

  • 8. DETERMINATION OF ULTRA-VIOLET LIGHT ABSORPTION BY CERTAIN BACTERIOPHAGES.
    Sandholzer LA; Mann MM; Berry GP
    Science; 1937 Jul; 86(2222):104-5. PubMed ID: 17733948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ULTRA-VIOLET LIGHT AND VACCINE VIRUS : II. THE EFFECT OF MONOCHROMATIC ULTRA-VIOLET LIGHT UPON VACCINE VIRUS.
    Rivers TM; Gates FL
    J Exp Med; 1928 Jan; 47(1):45-9. PubMed ID: 19869399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. STUDIES ON BIOLUMINESCENCE : XVII. FLUORESCENCE AND INHIBITION OF LUMINESCENCE IN CTENOPHORES BY ULTRA-VIOLET LIGHT.
    Harvey EN
    J Gen Physiol; 1925 Jan; 7(3):331-9. PubMed ID: 19872139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. THE VISIBILITY OF MONOCHROMATIC RADIATION AND THE ABSORPTION SPECTRUM OF VISUAL PURPLE.
    Hecht S; Williams RE
    J Gen Physiol; 1922 Sep; 5(1):1-33. PubMed ID: 19871975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. THE ABSORPTION OF ULTRA-VIOLET RADIATION BY CRYSTALLINE PEPSIN.
    Gates FL
    J Gen Physiol; 1934 Nov; 18(2):265-78. PubMed ID: 19872841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superhydrophobic and White Light-Activated Bactericidal Surface through a Simple Coating.
    Hwang GB; Patir A; Allan E; Nair SP; Parkin IP
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29002-29009. PubMed ID: 28758725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic interaction between wavelength of light and concentration of H₂O₂ in bactericidal activity of photolysis of H₂O₂.
    Toki T; Nakamura K; Kurauchi M; Kanno T; Katsuda Y; Ikai H; Hayashi E; Egusa H; Sasaki K; Niwano Y
    J Biosci Bioeng; 2015 Mar; 119(3):358-62. PubMed ID: 25282638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. THE BACTERICIDAL EFFECT OF ULTRAVIOLET RADIATION ON ESCHERICHIA COLI IN LIQUID SUSPENSIONS.
    Hollaender A; Claus WD
    J Gen Physiol; 1936 May; 19(5):753-65. PubMed ID: 19872959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the potential for resistance to antimicrobial violet-blue light in
    Tomb RM; Maclean M; Coia JE; MacGregor SJ; Anderson JG
    Antimicrob Resist Infect Control; 2017; 6():100. PubMed ID: 29046782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RESULTS OF IRRADIATING STAPHYLOCOCCUS AUREUS BACTERIOPHAGE WITH MONOCHROMATIC ULTRAVIOLET LIGHT.
    Gates FL
    J Exp Med; 1934 Jul; 60(2):179-88. PubMed ID: 19870293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RESULTS OF IRRADIATING SACCHAROMYCES WITH MONOCHROMATIC ULTRA-VIOLET LIGHT : IV. RELATION OF ENERGY TO OBSERVED INHIBITORY EFFECTS.
    Oster RH; Arnold WA
    J Gen Physiol; 1935 Jan; 18(3):351-5. PubMed ID: 19872847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoactivable Polymers Embedded with Cadmium-Free Quantum Dots and Crystal Violet: Efficient Bactericidal Activity against Clinical Strains of Antibiotic-Resistant Bacteria.
    Owusu EGA; MacRobert AJ; Naasani I; Parkin IP; Allan E; Yaghini E
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12367-12378. PubMed ID: 30855136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. THE RELATION OF TIME, INTENSITY AND WAVE-LENGTH IN THE PHOTOSENSORY SYSTEM OF PHOLAS.
    Hecht S
    J Gen Physiol; 1928 May; 11(5):657-72. PubMed ID: 19872428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.