These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19873489)

  • 41. Symbiotic Chlorella variabilis incubated under constant dark conditions for 24 hours loses the ability to avoid digestion by host lysosomal enzymes in digestive vacuoles of host ciliate Paramecium bursaria.
    Kodama Y; Fujishima M
    FEMS Microbiol Ecol; 2014 Dec; 90(3):946-55. PubMed ID: 25348325
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of Temperature on Photosynthesis and CO(2) Evolution in Light and Darkness by Green Leaves.
    Hew CS; Krotkov G; Canvin DT
    Plant Physiol; 1969 May; 44(5):671-7. PubMed ID: 16657119
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Correlation between flash-induced oxygen evolution and fluorescence yield kinetics in the 0 to 16 mus range in Chlorella pyyrenoidosa during incubation with hydroxylamine.
    Den Haan GA; Gorter De Vries H; Duysens LN
    Biochim Biophys Acta; 1976 May; 430(2):265-81. PubMed ID: 1276184
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Experiments on mixotrophic protists and catastrophic darkness.
    Jones H; Cockell CS; Goodson C; Price N; Simpson A; Thomas B
    Astrobiology; 2009; 9(6):563-71. PubMed ID: 19586393
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chloroplast development in green barley leaves transferred to darkness.
    Adamson H
    Prog Clin Biol Res; 1982; 102 Pt B():189-99. PubMed ID: 7163170
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Effect of short dark periods on CO 2 uptake and carboxylation of phosphoenolpyruvate during the photosynthetic induction period in Chlorella vulgaris].
    Döhler G
    Arch Mikrobiol; 1973 Apr; 90(4):333-41. PubMed ID: 4701701
    [No Abstract]   [Full Text] [Related]  

  • 47. Toxic effects of 1,4-dichlorobenzene on photosynthesis in Chlorella pyrenoidosa.
    Zhang J; Wang J; Feng J; Lv J; Cai J; Liu Q; Xie S
    Environ Monit Assess; 2016 Sep; 188(9):526. PubMed ID: 27542668
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of light color on interspecific competition between Microcystis aeruginosa and Chlorella pyrenoidosa in batch experiment.
    Tan X; Zhang D; Duan Z; Parajuli K; Hu J
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):344-352. PubMed ID: 31788731
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Utilization of Exogenous Inorganic Carbon Species in Photosynthesis by Chlorella pyrenoidosa.
    Shelp BJ; Canvin DT
    Plant Physiol; 1980 May; 65(5):774-9. PubMed ID: 16661281
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The relationship of CO2 assimilation pathways and photorespiration to the physiological quantum requirement of green plant photosynthesis.
    Campbell WH; Black CC
    Biosystems; 1978 Aug; 10(3):253-64. PubMed ID: 719139
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Regulation of CO2 incorporation during photosynthesis in the green alga Chlorella].
    Döhler G
    Hoppe Seylers Z Physiol Chem; 1972 Oct; 353(10):1508-9. PubMed ID: 4649776
    [No Abstract]   [Full Text] [Related]  

  • 52. Photorespiration participates in the assimilation of acetate in Chlorella sorokiniana under high light.
    Xie X; Huang A; Gu W; Zang Z; Pan G; Gao S; He L; Zhang B; Niu J; Lin A; Wang G
    New Phytol; 2016 Feb; 209(3):987-98. PubMed ID: 26439434
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inhibition of oxygen evolution following illumination of Chlorella cells with far-red light.
    Bennoun P; Bouges-Bocquet B
    Biochim Biophys Acta; 1975 Nov; 408(2):180-5. PubMed ID: 1191656
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gas exchange of algae. IV. Reliability of Chlorella pyrenoidosa.
    Ammann EC; Fraser-Smith A
    Appl Microbiol; 1968 May; 16(5):669-72. PubMed ID: 4385488
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Effects of nitrogen, manganese, and sulfur deprivation on photo-hydrogen evolution and growth of Chlorella pyrenoidosa].
    Zhang L; Sang M; Li A; Zhang C
    Sheng Wu Gong Cheng Xue Bao; 2010 Apr; 26(4):489-94. PubMed ID: 20575437
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Early toxic effect of zinc, cobalt, and cadmium on photosynthetic activity of green alga Chlorella pyrenoidosa Chick S-39].
    Plekhanov SE; Chemeris IuK
    Izv Akad Nauk Ser Biol; 2003; (5):610-6. PubMed ID: 14735794
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of low temperatures on fatty acid biosynthesis in plants.
    Harris P; James AT
    Biochem J; 1969 Apr; 112(3):325-30. PubMed ID: 5801303
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Compensation for PSII photoinactivation by regulated non-photochemical dissipation influences the impact of photoinactivation on electron transport and CO2 assimilation.
    Kornyeyev D; Logan BA; Tissue DT; Allen RD; Holaday AS
    Plant Cell Physiol; 2006 Apr; 47(4):437-46. PubMed ID: 16449233
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhancement studies on algae and isolated chloroplasts. Part I. Variability of photosynthetic enhancement in Chlorella pyrenoidosa.
    Williams WP; Salamon Z
    Biochim Biophys Acta; 1976 May; 430(2):282-99. PubMed ID: 1276185
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Model based analysis of transient fluorescence yield induced by actinic laser flashes in spinach leaves and cells of green alga Chlorella pyrenoidosa Chick.
    Belyaeva NE; Schmitt FJ; Paschenko VZ; Riznichenko GY; Rubin AB; Renger G
    Plant Physiol Biochem; 2014 Apr; 77():49-59. PubMed ID: 24556534
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.