These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19873489)

  • 61. Limiting steps in photosystem II and water decomposition in Chlorella and spinach chloroplasts.
    Bouges-Bocquet B
    Biochim Biophys Acta; 1973 Apr; 292(3):772-85. PubMed ID: 4705455
    [No Abstract]   [Full Text] [Related]  

  • 62. Utilization of xylose for growth by the eukaryotic alga, Chlorella.
    Hawkins RL
    Curr Microbiol; 1999 Jun; 38(6):360-3. PubMed ID: 10341078
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Free radicals in photosynthetic reactions. L Electron paramagnetic resonance signals from illuminated Chlorella pyrenoidosa.
    ALLEN MB; PIETTE LR; MURCHIO JC
    Biochim Biophys Acta; 1962 Jul; 60():539-47. PubMed ID: 13860561
    [No Abstract]   [Full Text] [Related]  

  • 64. Mixotrophic continuous flow cultivation of Chlorella protothecoides for lipids.
    Wang Y; Rischer H; Eriksen NT; Wiebe MG
    Bioresour Technol; 2013 Sep; 144():608-14. PubMed ID: 23907064
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Kinetics of luminescence in the 10-6-10-4-s range in Chlorella.
    Lavorel J
    Biochim Biophys Acta; 1973 Nov; 325(2):213-29. PubMed ID: 4761981
    [No Abstract]   [Full Text] [Related]  

  • 66. Toxic effects and mechanisms of PFOA and its substitute GenX on the photosynthesis of Chlorella pyrenoidosa.
    Li Y; Liu X; Zheng X; Yang M; Gao X; Huang J; Zhang L; Fan Z
    Sci Total Environ; 2021 Apr; 765():144431. PubMed ID: 33387923
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Responses of Heterotrophic Cultures of Chlorella vulgaris Beyerinck to Darkness and Light. II. Action Spectrum for and Mechanism of the Light Requirement for Heterotrophic Growth.
    Karlander EP; Krauss RW
    Plant Physiol; 1966 Jan; 41(1):7-14. PubMed ID: 16656234
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Photosynthesis dynamics and regulation sensed in the frequency domain.
    Nedbal L; Lazár D
    Plant Physiol; 2021 Oct; 187(2):646-661. PubMed ID: 34608969
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Evaluation of the toxic response induced by azoxystrobin in the non-target green alga Chlorella pyrenoidosa.
    Lu T; Zhu Y; Xu J; Ke M; Zhang M; Tan C; Fu Z; Qian H
    Environ Pollut; 2018 Mar; 234():379-388. PubMed ID: 29202416
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Photoregulation of transfer and 5S ribosomal RNA synthesis in Chlorella.
    Steup M; Ssymank V; Winkler U; Glock H
    Planta; 1977 Jan; 137(2):139-44. PubMed ID: 24420630
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Differential effects of light on photosynthesis and nitrogen metabolism in Chlorella pyrenoidosa. SAM-TR-69-40.
    Cobb HD; Hall RH; Costello WJ
    Tech Rep SAM-TR; 1969 Aug; ():1-9. PubMed ID: 5308727
    [No Abstract]   [Full Text] [Related]  

  • 72. Lifetime of the excited state in vivo. I. Chlorophyll a in algae, at room and at liquid nitrogen temperatures; rate constants of radiationless deactivation and trapping.
    Mar T; Govindjee ; Singhal GS; Merkelo H
    Biophys J; 1972 Jul; 12(7):797-808. PubMed ID: 4624832
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [The metabolic interactions between Paramecium bursaria Ehrbg. and Chlorella spec. in the Paramecium bursaria-symbiosis. II. Symbiosis-specific properties of the physiology and the cytology of the symbiotic unit and their regulation (author's transl)].
    Reisser W
    Arch Microbiol; 1976 Dec; 111(1-2):161-70. PubMed ID: 1015958
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Photorespiration and Oxygen Inhibition of Photosynthesis in Chlorella pyrenoidosa.
    Shelp BJ; Canvin DT
    Plant Physiol; 1980 May; 65(5):780-4. PubMed ID: 16661282
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The role of plastoquinone in the in vivo photosynthetic cyclic electron transport pathway in algae.
    Biggins J
    FEBS Lett; 1974 Jan; 38(3):311-4. PubMed ID: 4855064
    [No Abstract]   [Full Text] [Related]  

  • 76. Sustained photo-hydrogen production by Chlorella pyrenoidosa without sulfur depletion.
    Wang H; Fan X; Zhang Y; Yang D; Guo R
    Biotechnol Lett; 2011 Jul; 33(7):1345-50. PubMed ID: 21400238
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [Dependence of the production of organic substances liberated by Chlorella pyrenoidosa cells on the photosynthesis process].
    Maksimova IV; Kuznetsova ACh
    Mikrobiologiia; 1973; 42(6):969-75. PubMed ID: 4782426
    [No Abstract]   [Full Text] [Related]  

  • 78. Light driven scattering changes and increased 515 nm absorbance changes associated with fatty acid inhibition of photosynthesis in Chlorella.
    Hiller RG
    Biochim Biophys Acta; 1969 Apr; 172(3):546-52. PubMed ID: 4889505
    [No Abstract]   [Full Text] [Related]  

  • 79. In vivo changes of the oxidation-reduction state of NADP and of the ATP/ADP cellular ratio linked to the photosynthetic activity in Chlamydomonas reinhardtii.
    Forti G; Furia A; Bombelli P; Finazzi G
    Plant Physiol; 2003 Jul; 132(3):1464-74. PubMed ID: 12857827
    [TBL] [Abstract][Full Text] [Related]  

  • 80. On the state 1-state 2 phenomenon in photosynthesis.
    Wang RT; Myers J
    Biochim Biophys Acta; 1974 Apr; 347(1):134-40. PubMed ID: 4433555
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.