These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 19873615)

  • 1. Equivalent pore radius of the axolemma of resting and stimulated squid axons.
    Villegas R; Bruzual IB; Villegas GM
    J Gen Physiol; 1968 May; 51(5):81-92. PubMed ID: 19873615
    [No Abstract]   [Full Text] [Related]  

  • 2. Equivalent pore radius of the axolemma of resting and stimulated squid axons.
    Villegas R; Bruzual IB; Villegas GM
    J Gen Physiol; 1968 May; 51(5):Suppl:81S+. PubMed ID: 5654761
    [No Abstract]   [Full Text] [Related]  

  • 3. Characterization of the resting axolemma in the giant axon of the squid.
    VILLEGAS R; BARNOLA FV
    J Gen Physiol; 1961 May; 44(5):963-77. PubMed ID: 13781431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equivalent pore radius in the axolemma of the giant axon of the squid.
    VILLEGAS R; BARNOLA FV
    Nature; 1960 Nov; 188():762-3. PubMed ID: 13781432
    [No Abstract]   [Full Text] [Related]  

  • 5. Nonelectrolyte penetration and sodium fluxes through the axolemma of resting and stimulated medium sized axons of the squid Doryteuthis plei.
    Villegas R; Villegas GM; Blei M; Herrera FC; Villegas J
    J Gen Physiol; 1966 Sep; 50(1):43-59. PubMed ID: 5971032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion barrieres in the squid nerve fiber. The axolemma and the Schwann layer.
    VILLEGAS R; CAPUTO C; VILLEGAS L
    J Gen Physiol; 1962 Nov; 46(2):245-55. PubMed ID: 13997307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of the Schwann sheath from the giant nerve fiber of the squid: an electron-microscopic study of the axolemma and associated axoplasmic structures.
    Metuzals J; Tasaki I; Terakawa S; Clapin DF
    Cell Tissue Res; 1981; 221(1):1-15. PubMed ID: 7032702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of transmission coefficients for some permeant molecules in human red cell and resting axolemma squid axon membranes.
    Elkomoss SG; Pape A
    J Biochem Biophys Methods; 2007 Apr; 70(3):525-30. PubMed ID: 17011039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonelectrolyte permeability, sodium influx, electrical potentials, and axolemma ultrastructure in squid axons of various diameters.
    Villegas R; Villegas GM; DiPolo R; Villegas J
    J Gen Physiol; 1971 May; 57(5):623-37. PubMed ID: 5553105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subaxolemmal cytoskeleton in squid giant axon. II. Morphological identification of microtubule- and microfilament-associated domains of axolemma.
    Tsukita S; Tsukita S; Kobayashi T; Matsumoto G
    J Cell Biol; 1986 May; 102(5):1710-25. PubMed ID: 3700475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium flux ratio in voltage-clamped squid giant axons.
    Begenisich T; Busath D
    J Gen Physiol; 1981 May; 77(5):489-502. PubMed ID: 6262428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of phospholipase A2 and acyltransferase activities in squid (Loligo pealei) axoplasm: comparison with enzyme activities in other neural tissues, axolemma and axoplasmic subfractions.
    Alberghina M; Gould RM
    Neurochem Int; 1992 Dec; 21(4):563-71. PubMed ID: 1303739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of microtubules and axolinin in membrane excitation of the squid giant axon.
    Sakai H; Matsumoto G; Murofushi H
    Adv Biophys; 1985; 19():43-89. PubMed ID: 2872780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructure of the squid axon membrane as revealed by freeze-fracture electron microscopy.
    Chang DC; Tasaki I
    Cell Mol Neurobiol; 1986 Mar; 6(1):43-53. PubMed ID: 3719619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium flux ratio in voltage-clamped squid giant axons.
    Begenisich T; De Weer P
    J Gen Physiol; 1980 Jul; 76(1):83-98. PubMed ID: 7411112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subaxolemmal filamentous network in the giant nerve fiber of the squid (Loligo pealei L.) and its possible role in excitability.
    Metuzals J; Tasaki I
    J Cell Biol; 1978 Aug; 78(2):597-621. PubMed ID: 690181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influx of orthophosphate into squid giant axons.
    Caldwell PC; Lowe AG
    J Physiol; 1970 Apr; 207(2):271-80. PubMed ID: 5499019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rat optic nerve: freeze-fracture studies during development of myelinated axons.
    Black JA; Foster RE; Waxman SG
    Brain Res; 1982 Oct; 250(1):1-20. PubMed ID: 7139310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the ATP-promoted aspect of Na+-Ca2+ exchange present in squid retinal nerve axolemma.
    Clark JM; Jones EL; Matsumura F
    Biochim Biophys Acta; 1986 Sep; 860(3):662-71. PubMed ID: 3741869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composition of axolemma-enriched fractions isolated from bovine CNS myelinated axons.
    DeVries GH; Payne W; Saul RG
    Neurochem Res; 1981 May; 6(5):521-37. PubMed ID: 7279111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.