These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 19873623)

  • 1. Lytic agents, cell permeability, and monolayer penetrability.
    Salton MR
    J Gen Physiol; 1968 Jul; 52(1):227-52. PubMed ID: 19873623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of olopatadine and selected antihistamines with model and natural membranes.
    Brockman HL; Momsen MM; Knudtson JR; Miller ST; Graff G; Yanni JM
    Ocul Immunol Inflamm; 2003 Dec; 11(4):247-68. PubMed ID: 14704897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lytic agents, cell permeability, and monolayer penetrability.
    Salton MR
    J Gen Physiol; 1968 Jul; 52(1):227Suppl-52s. PubMed ID: 4913700
    [No Abstract]   [Full Text] [Related]  

  • 4. Mechanism of cell wall penetration by viruses. II. Demonstration of cyclic permeability change accompanying virus infection of Escherichia coli B cells.
    PUCK TT; LEE HH
    J Exp Med; 1955 Feb; 101(2):151-75. PubMed ID: 13233443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic studies on surfactant-induced membrane permeability enhancement.
    Xia WJ; Onyuksel H
    Pharm Res; 2000 May; 17(5):612-8. PubMed ID: 10888315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mode of action of membrane-disruptive lytic compounds from the marine dinoflagellate Alexandrium tamarense.
    Ma H; Krock B; Tillmann U; Bickmeyer U; Graeve M; Cembella A
    Toxicon; 2011 Sep; 58(3):247-58. PubMed ID: 21741395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monolayer and interfacial permeation.
    Blank M
    J Gen Physiol; 1968 Jul; 52(1):191-208. PubMed ID: 19873621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The indiction by complement of a change in KSCN-dissociable red cell membrane lipids.
    Giavedoni EB; Dalmasso AP
    J Immunol; 1976 Apr; 116(4):1163-9. PubMed ID: 1254965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of N-terminal acetylation on lytic activity and lipid-packing perturbation induced in model membranes by a mastoparan-like peptide.
    Alvares DS; Wilke N; Ruggiero Neto J
    Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):737-748. PubMed ID: 29287697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipid bilayer-perturbing properties underlying lysis induced by pH-sensitive cationic lysine-based surfactants in biomembranes.
    Nogueira DR; Mitjans M; Busquets MA; PĂ©rez L; Vinardell MP
    Langmuir; 2012 Aug; 28(32):11687-98. PubMed ID: 22816661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface properties and behavior of lipid extracts from plasma membranes of cells cultured as monolayer and in tissue-like conditions.
    Jordanova A; Stefanova N; Staneva G; Pankov R; Momchilova A; Lalchev Z
    Cell Biochem Biophys; 2009; 54(1-3):47-55. PubMed ID: 19484199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping and analysis of the lytic and fusogenic domains of surfactant protein B.
    Ryan MA; Qi X; Serrano AG; Ikegami M; Perez-Gil J; Johansson J; Weaver TE
    Biochemistry; 2005 Jan; 44(3):861-72. PubMed ID: 15654742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of staphylococcal alpha-toxin with artificial and natural membranes.
    Freer JH; Arbuthnott JP; Bernheimer AW
    J Bacteriol; 1968 Mar; 95(3):1153-68. PubMed ID: 5643052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of the effects of olopatadine and ketotifen on model membranes.
    Brockman H; Graff G; Spellman J; Yanni J
    Acta Ophthalmol Scand Suppl; 2000; (230):10-5. PubMed ID: 11057342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipopolysaccharides in bacterial membranes act like cholesterol in eukaryotic plasma membranes in providing protection against melittin-induced bilayer lysis.
    Allende D; McIntosh TJ
    Biochemistry; 2003 Feb; 42(4):1101-8. PubMed ID: 12549932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane-lytic actions of sulphonated methyl ester surfactants and implications to bactericidal effect and cytotoxicity.
    Pan F; Li Z; Gong H; Petkov JT; Lu JR
    J Colloid Interface Sci; 2018 Dec; 531():18-27. PubMed ID: 30015167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do sterols reduce proton and sodium leaks through lipid bilayers?
    Haines TH
    Prog Lipid Res; 2001 Jul; 40(4):299-324. PubMed ID: 11412894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemolysis by surfactants--A review.
    Manaargadoo-Catin M; Ali-Cherif A; Pougnas JL; Perrin C
    Adv Colloid Interface Sci; 2016 Feb; 228():1-16. PubMed ID: 26687805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides.
    Shai Y
    Biochim Biophys Acta; 1999 Dec; 1462(1-2):55-70. PubMed ID: 10590302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct visualization of membrane leakage induced by the antibiotic peptides: maculatin, citropin, and aurein.
    Ambroggio EE; Separovic F; Bowie JH; Fidelio GD; Bagatolli LA
    Biophys J; 2005 Sep; 89(3):1874-81. PubMed ID: 15994901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.