These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 19873745)

  • 1. [Regulations diversity of fungal copper homeostasis--a review].
    Zhu C; Pan J; Yan B; Zhu X
    Wei Sheng Wu Xue Bao; 2009 Jul; 49(7):841-7. PubMed ID: 19873745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saccharomyces cerevisiae mutants altered in vacuole function are defective in copper detoxification and iron-responsive gene transcription.
    Szczypka MS; Zhu Z; Silar P; Thiele DJ
    Yeast; 1997 Dec; 13(15):1423-35. PubMed ID: 9434348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of genes involved in the toxic response of Saccharomyces cerevisiae against iron and copper overload by parallel analysis of deletion mutants.
    Jo WJ; Loguinov A; Chang M; Wintz H; Nislow C; Arkin AP; Giaever G; Vulpe CD
    Toxicol Sci; 2008 Jan; 101(1):140-51. PubMed ID: 17785683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of copper homeostasis by Cuf1 associates with its subcellular localization in the pathogenic yeast Cryptococcus neoformans H99.
    Jiang N; Liu X; Yang J; Li Z; Pan J; Zhu X
    FEMS Yeast Res; 2011 Aug; 11(5):440-8. PubMed ID: 21489137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms for copper acquisition, distribution and regulation.
    Kim BE; Nevitt T; Thiele DJ
    Nat Chem Biol; 2008 Mar; 4(3):176-85. PubMed ID: 18277979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron and siderophores in fungal-host interactions.
    Johnson L
    Mycol Res; 2008 Feb; 112(Pt 2):170-83. PubMed ID: 18280720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of copper toxicity in Saccharomyces cerevisiae determined by microarray analysis.
    Yasokawa D; Murata S; Kitagawa E; Iwahashi Y; Nakagawa R; Hashido T; Iwahashi H
    Environ Toxicol; 2008 Oct; 23(5):599-606. PubMed ID: 18528910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cadmium regulates copper homoeostasis by inhibiting the activity of Mac1, a transcriptional activator of the copper regulon, in Saccharomyces cerevisiae.
    Heo DH; Baek IJ; Kang HJ; Kim JH; Chang M; Jeong MY; Kim TH; Choi ID; Yun CW
    Biochem J; 2010 Oct; 431(2):257-65. PubMed ID: 20670216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and biomass production of a Saccharomyces cerevisiae strain binding copper and zinc ions.
    Stroobants A; Delroisse JM; Delvigne F; Delva J; Portetelle D; Vandenbol M
    Appl Biochem Biotechnol; 2009 Apr; 157(1):85-97. PubMed ID: 18512161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conserved cAMP signaling cascades regulate fungal development and virulence.
    D'Souza CA; Heitman J
    FEMS Microbiol Rev; 2001 May; 25(3):349-64. PubMed ID: 11348689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene expression profiling and phenotype analyses of S. cerevisiae in response to changing copper reveals six genes with new roles in copper and iron metabolism.
    van Bakel H; Strengman E; Wijmenga C; Holstege FC
    Physiol Genomics; 2005 Aug; 22(3):356-67. PubMed ID: 15886332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron and copper as virulence modulators in human fungal pathogens.
    Ding C; Festa RA; Sun TS; Wang ZY
    Mol Microbiol; 2014 Jul; 93(1):10-23. PubMed ID: 24851950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systems biology of energy homeostasis in yeast.
    Zhang J; Vemuri G; Nielsen J
    Curr Opin Microbiol; 2010 Jun; 13(3):382-8. PubMed ID: 20439164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights into copper homeostasis in filamentous fungi.
    Antsotegi-Uskola M; Markina-IƱarrairaegui A; Ugalde U
    Int Microbiol; 2020 Jan; 23(1):65-73. PubMed ID: 31093811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From aging to virulence: forging connections through the study of copper homeostasis in eukaryotic microorganisms.
    Rees EM; Thiele DJ
    Curr Opin Microbiol; 2004 Apr; 7(2):175-84. PubMed ID: 15063856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The gene ICS3 from the yeast Saccharomyces cerevisiae is involved in copper homeostasis dependent on extracellular pH.
    Alesso CA; Discola KF; Monteiro G
    Fungal Genet Biol; 2015 Sep; 82():43-50. PubMed ID: 26127016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new hexose transporter from Cryptococcus neoformans: molecular cloning and structural and functional characterization.
    Chikamori M; Fukushima K
    Fungal Genet Biol; 2005 Jul; 42(7):646-55. PubMed ID: 15907385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition metal homeostasis: from yeast to human disease.
    Bleackley MR; Macgillivray RT
    Biometals; 2011 Oct; 24(5):785-809. PubMed ID: 21479832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of copper uptake transporters.
    Pope CR; Flores AG; Kaplan JH; Unger VM
    Curr Top Membr; 2012; 69():97-112. PubMed ID: 23046648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of Copper Homeostasis at the Host-Pathogen Axis: From Bacteria to Fungi.
    Li C; Li Y; Ding C
    Int J Mol Sci; 2019 Jan; 20(1):. PubMed ID: 30621285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.