These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 19873988)

  • 1. Got TiO2 nanotubes? Lithium ion intercalation can boost their photoelectrochemical performance.
    Meekins BH; Kamat PV
    ACS Nano; 2009 Nov; 3(11):3437-46. PubMed ID: 19873988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance.
    Zhang J; Bang JH; Tang C; Kamat PV
    ACS Nano; 2010 Jan; 4(1):387-95. PubMed ID: 20000756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity.
    Sun L; Li J; Wang C; Li S; Lai Y; Chen H; Lin C
    J Hazard Mater; 2009 Nov; 171(1-3):1045-50. PubMed ID: 19632043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoelectrochemical properties and the detection mechanism of Bi2WO6 nanosheet modified TiO2 nanotube arrays.
    Pang Y; Xu G; Zhang X; Lv J; Shi K; Zhai P; Xue Q; Wang X; Wu Y
    Dalton Trans; 2015 Oct; 44(40):17784-94. PubMed ID: 26400480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties.
    Song P; Zhang X; Sun M; Cui X; Lin Y
    Nanoscale; 2012 Mar; 4(5):1800-4. PubMed ID: 22297577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nitride polymer sensitized TiO2 nanotube arrays with enhanced visible light photoelectrochemical and photocatalytic performance.
    Zhou X; Peng F; Wang H; Yu H; Fang Y
    Chem Commun (Camb); 2011 Oct; 47(37):10323-5. PubMed ID: 21853202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries.
    Han H; Song T; Lee EK; Devadoss A; Jeon Y; Ha J; Chung YC; Choi YM; Jung YG; Paik U
    ACS Nano; 2012 Sep; 6(9):8308-15. PubMed ID: 22935008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting.
    Wang G; Wang H; Ling Y; Tang Y; Yang X; Fitzmorris RC; Wang C; Zhang JZ; Li Y
    Nano Lett; 2011 Jul; 11(7):3026-33. PubMed ID: 21710974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays.
    Wolcott A; Smith WA; Kuykendall TR; Zhao Y; Zhang JZ
    Small; 2009 Jan; 5(1):104-11. PubMed ID: 19040214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amorphous and crystalline TiO2 nanotube arrays for enhanced Li-ion intercalation properties.
    Guan D; Cai C; Wang Y
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3641-50. PubMed ID: 21776749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ synthesis of TiO2(B) nanotube/nanoparticle composite anode materials for lithium ion batteries.
    Liu X; Sun Q; Ng AM; Djurišić AB; Xie M; Liao C; Shih K; Vranješ M; Nedeljković JM; Deng Z
    Nanotechnology; 2015 Oct; 26(42):425403. PubMed ID: 26421360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coadsorption of horseradish peroxidase with thionine on TiO2 nanotubes for biosensing.
    Liu S; Chen A
    Langmuir; 2005 Aug; 21(18):8409-13. PubMed ID: 16114950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfidated TiO2 nanotubes: a potential 3D cathode material for Li-ion micro batteries.
    Kyeremateng NA; Plylahan N; dos Santos AC; Taveira LV; Dick LF; Djenizian T
    Chem Commun (Camb); 2013 May; 49(39):4205-7. PubMed ID: 23165523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vertically oriented Ti-Pd mixed oxynitride nanotube arrays for enhanced photoelectrochemical water splitting.
    Allam NK; Poncheri AJ; El-Sayed MA
    ACS Nano; 2011 Jun; 5(6):5056-66. PubMed ID: 21568298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical Performance of Nitrogen-Doped TiO
    Appadurai T; Subramaniyam C; Kuppusamy R; Karazhanov S; Subramanian B
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31416287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coaxial heterogeneous structure of TiO2 nanotube arrays with CdS as a superthin coating synthesized via modified electrochemical atomic layer deposition.
    Zhu W; Liu X; Liu H; Tong D; Yang J; Peng J
    J Am Chem Soc; 2010 Sep; 132(36):12619-26. PubMed ID: 20536235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoelectrochemical manifestation of photoelectron transport properties of vertically aligned nanotubular TiO2 photoanodes.
    Zhang H; Zhao H; Zhang S; Quan X
    Chemphyschem; 2008 Jan; 9(1):117-23. PubMed ID: 18072232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aligned TiO₂ nanotube/nanoparticle heterostructures with enhanced electrochemical performance as three-dimensional anode for lithium-ion microbatteries.
    Xie K; Guo M; Lu W; Huang H
    Nanotechnology; 2014 Nov; 25(45):455401. PubMed ID: 25338125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced photoelectrocatalytic degradation of ammonia by in situ photoelectrogenerated active chlorine on TiO
    Xiao S; Wan D; Zhang K; Qu H; Peng J
    J Environ Sci (China); 2016 Dec; 50():103-108. PubMed ID: 28034419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced photoelectrocatalytic performance of titanium dioxide/carbon cloth based photoelectrodes by graphene modification under visible-light irradiation.
    Zhai C; Zhu M; Ren F; Yao Z; Du Y; Yang P
    J Hazard Mater; 2013 Dec; 263 Pt 2():291-8. PubMed ID: 24091125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.