These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 19874208)
1. Prediction of acute toxicity in fish by using QSAR methods and chemical modes of action. Lozano S; Lescot E; Halm MP; Lepailleur A; Bureau R; Rault S J Enzyme Inhib Med Chem; 2010 Apr; 25(2):195-203. PubMed ID: 19874208 [TBL] [Abstract][Full Text] [Related]
2. Mode of action-based local QSAR modeling for the prediction of acute toxicity in the fathead minnow. Yuan H; Wang YY; Cheng YY J Mol Graph Model; 2007 Jul; 26(1):327-35. PubMed ID: 17224289 [TBL] [Abstract][Full Text] [Related]
3. Assessing the reliability of a QSAR model's predictions. He L; Jurs PC J Mol Graph Model; 2005 Jun; 23(6):503-23. PubMed ID: 15896992 [TBL] [Abstract][Full Text] [Related]
4. Validation of a QSAR model for acute toxicity. Pavan M; Netzeva TI; Worth AP SAR QSAR Environ Res; 2006 Apr; 17(2):147-71. PubMed ID: 16644555 [TBL] [Abstract][Full Text] [Related]
5. Using fragment chemistry data mining and probabilistic neural networks in screening chemicals for acute toxicity to the fathead minnow. Niculescu SP; Atkinson A; Hammond G; Lewis M SAR QSAR Environ Res; 2004 Aug; 15(4):293-309. PubMed ID: 15370419 [TBL] [Abstract][Full Text] [Related]
6. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection. Tetko IV; Sushko I; Pandey AK; Zhu H; Tropsha A; Papa E; Oberg T; Todeschini R; Fourches D; Varnek A J Chem Inf Model; 2008 Sep; 48(9):1733-46. PubMed ID: 18729318 [TBL] [Abstract][Full Text] [Related]
7. Using support vector regression coupled with the genetic algorithm for predicting acute toxicity to the fathead minnow. Wang Y; Zheng M; Xiao J; Lu Y; Wang F; Lu J; Luo X; Zhu W; Jianga H; Chen K SAR QSAR Environ Res; 2010 Jul; 21(5-6):559-70. PubMed ID: 20818588 [TBL] [Abstract][Full Text] [Related]
8. Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio. Zvinavashe E; Du T; Griff T; van den Berg HH; Soffers AE; Vervoort J; Murk AJ; Rietjens IM Chemosphere; 2009 Jun; 75(11):1531-8. PubMed ID: 19376559 [TBL] [Abstract][Full Text] [Related]
9. A QSAR for baseline toxicity: validation, domain of application, and prediction. Oberg T Chem Res Toxicol; 2004 Dec; 17(12):1630-7. PubMed ID: 15606139 [TBL] [Abstract][Full Text] [Related]
10. QSAR modelling of the ERL-D fathead minnow acute toxicity database. Nendza M; Russom CL Xenobiotica; 1991 Feb; 21(2):147-70. PubMed ID: 2058173 [TBL] [Abstract][Full Text] [Related]
11. QSAR model for predicting pesticide aquatic toxicity. Mazzatorta P; Smiesko M; Lo Piparo E; Benfenati E J Chem Inf Model; 2005; 45(6):1767-74. PubMed ID: 16309283 [TBL] [Abstract][Full Text] [Related]
12. Local and global quantitative structure-activity relationship modeling and prediction for the baseline toxicity. Yuan H; Wang Y; Cheng Y J Chem Inf Model; 2007; 47(1):159-69. PubMed ID: 17238261 [TBL] [Abstract][Full Text] [Related]
13. QSAR and chemometric approaches for setting water quality objectives for dangerous chemicals. Vighi M; Gramatica P; Consolaro F; Todeschini R Ecotoxicol Environ Saf; 2001 Jul; 49(3):206-20. PubMed ID: 11440473 [TBL] [Abstract][Full Text] [Related]
14. Description of the electronic structure of organic chemicals using semiempirical and ab initio methods for development of toxicological QSARs. Netzeva TI; Aptula AO; Benfenati E; Cronin MT; Gini G; Lessigiarska I; Maran U; Vracko M; Schüürmann G J Chem Inf Model; 2005; 45(1):106-14. PubMed ID: 15667135 [TBL] [Abstract][Full Text] [Related]
15. Developing a list of reference chemicals for testing alternatives to whole fish toxicity tests. Schirmer K; Tanneberger K; Kramer NI; Völker D; Scholz S; Hafner C; Lee LE; Bols NC; Hermens JL Aquat Toxicol; 2008 Nov; 90(2):128-37. PubMed ID: 18829120 [TBL] [Abstract][Full Text] [Related]
16. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling. Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223 [TBL] [Abstract][Full Text] [Related]
17. Qsar investigation of a large data set for fish, algae and Daphnia toxicity. Lessigiarska I; Wortha AP; Sokull-Klüttgen B; Jeram S; Dearden JC; Netzeva TI; Cronin MT SAR QSAR Environ Res; 2004; 15(5-6):413-31. PubMed ID: 15669699 [TBL] [Abstract][Full Text] [Related]
18. Prediction of cellular toxicity of halocarbons from computed chemodescriptors: a hierarchical QSAR approach. Basak SC; Balasubramanian K; Gute BD; Mills D; Gorczynska A; Roszak S J Chem Inf Comput Sci; 2003; 43(4):1103-9. PubMed ID: 12870899 [TBL] [Abstract][Full Text] [Related]
20. Classification of chemicals according to mechanism of aquatic toxicity: an evaluation of the implementation of the Verhaar scheme in Toxtree. Enoch SJ; Hewitt M; Cronin MT; Azam S; Madden JC Chemosphere; 2008 Sep; 73(3):243-8. PubMed ID: 18692861 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]