BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 19874602)

  • 1. Value of eight-amino-acid matches in predicting the allergenicity status of proteins: an empirical bioinformatic investigation.
    Herman RA; Song P; Thirumalaiswamysekhar A
    Clin Mol Allergy; 2009 Oct; 7():9. PubMed ID: 19874602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The value of short amino acid sequence matches for prediction of protein allergenicity.
    Silvanovich A; Nemeth MA; Song P; Herman R; Tagliani L; Bannon GA
    Toxicol Sci; 2006 Mar; 90(1):252-8. PubMed ID: 16338955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinformatic methods for allergenicity assessment using a comprehensive allergen database.
    Hileman RE; Silvanovich A; Goodman RE; Rice EA; Holleschak G; Astwood JD; Hefle SL
    Int Arch Allergy Immunol; 2002 Aug; 128(4):280-91. PubMed ID: 12218366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of bioinformatic approaches for predicting allergen cross reactivity.
    Herman RA; Song P
    Food Chem Toxicol; 2019 Oct; 132():110656. PubMed ID: 31279045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Practical and predictive bioinformatics methods for the identification of potentially cross-reactive protein matches.
    Goodman RE
    Mol Nutr Food Res; 2006 Jul; 50(7):655-60. PubMed ID: 16810734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinformatic analysis for allergenicity assessment of Bacillus thuringiensis Cry proteins expressed in insect-resistant food crops.
    Randhawa GJ; Singh M; Grover M
    Food Chem Toxicol; 2011 Feb; 49(2):356-62. PubMed ID: 21078358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1:1 FASTA update: Using the power of
    Song P; Herman R; Kumpatla S
    Toxicol Rep; 2015; 2():1145-1148. PubMed ID: 28962455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative assessment of multiple criteria for the in silico prediction of cross-reactivity of proteins to known allergens.
    Mirsky HP; Cressman RF; Ladics GS
    Regul Toxicol Pharmacol; 2013 Nov; 67(2):232-9. PubMed ID: 23933007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive COMPARE database reduces allergenic risk of novel food proteins.
    Herman RA; Song P
    GM Crops Food; 2022 Dec; 13(1):112-118. PubMed ID: 35674136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lack of cross-reactivity between the Bacillus thuringiensis derived protein Cry1F in maize grain and dust mite Der p7 protein with human sera positive for Der p7-IgE.
    Ladics GS; Bardina L; Cressman RF; Mattsson JL; Sampson HA
    Regul Toxicol Pharmacol; 2006 Mar; 44(2):136-43. PubMed ID: 16406630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of global sequence comparison and one-to-one FASTA local alignment in regulatory allergenicity assessment of transgenic proteins in food crops.
    Song P; Herman RA; Kumpatla S
    Food Chem Toxicol; 2014 Sep; 71():142-8. PubMed ID: 24953553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of the potential allergenicity of a Milk Basic Protein fraction.
    Goodman RE; Taylor SL; Yamamura J; Kobayashi T; Kawakami H; Kruger CL; Thompson GP
    Food Chem Toxicol; 2007 Oct; 45(10):1787-94. PubMed ID: 17482742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pollen-related food allergy: cloning and immunological analysis of isoforms and mutants of Mal d 1, the major apple allergen, and Bet v 1, the major birch pollen allergen.
    Son DY; Scheurer S; Hoffmann A; Haustein D; Vieths S
    Eur J Nutr; 1999 Aug; 38(4):201-15. PubMed ID: 10502033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Further evaluation of the utility of "sliding window" FASTA in predicting cross-reactivity with allergenic proteins.
    Cressman RF; Ladics G
    Regul Toxicol Pharmacol; 2009 Aug; 54(3 Suppl):S20-5. PubMed ID: 19114081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating potential risks of food allergy of novel food sources based on comparison of proteins predicted from genomes and compared to www.AllergenOnline.org.
    Abdelmoteleb M; Zhang C; Furey B; Kozubal M; Griffiths H; Champeaud M; Goodman RE
    Food Chem Toxicol; 2021 Jan; 147():111888. PubMed ID: 33276067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performing IgE serum testing due to bioinformatics matches in the allergenicity assessment of GM crops.
    Goodman RE
    Food Chem Toxicol; 2008 Oct; 46 Suppl 10():S24-34. PubMed ID: 18715545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of possible allergenicity of hypothetical ORFs in common food crops using current bioinformatic guidelines and its implications for the safety assessment of GM crops.
    Young GJ; Zhang S; Mirsky HP; Cressman RF; Cong B; Ladics GS; Zhong CX
    Food Chem Toxicol; 2012 Oct; 50(10):3741-51. PubMed ID: 22867756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why are some proteins allergenic? Implications for biotechnology.
    Lehrer SB; Horner WE; Reese G
    Crit Rev Food Sci Nutr; 1996 Jul; 36(6):553-64. PubMed ID: 8841731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening of transgenic proteins expressed in transgenic food crops for the presence of short amino acid sequences identical to potential, IgE - binding linear epitopes of allergens.
    Kleter GA; Peijnenburg AA
    BMC Struct Biol; 2002 Dec; 2():8. PubMed ID: 12477382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico allergenicity prediction of several lipid transfer proteins.
    Garino C; Coïsson JD; Arlorio M
    Comput Biol Chem; 2016 Feb; 60():32-42. PubMed ID: 26643760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.