These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 19874855)
1. Species differences in group size and electrosensory interference in weakly electric fishes: implications for electrosensory processing. Stamper SA; Carrera-G E; Tan EW; Fugère V; Krahe R; Fortune ES Behav Brain Res; 2010 Mar; 207(2):368-76. PubMed ID: 19874855 [TBL] [Abstract][Full Text] [Related]
2. Electrosensory interference in naturally occurring aggregates of a species of weakly electric fish, Eigenmannia virescens. Tan EW; Nizar JM; Carrera-G E; Fortune ES Behav Brain Res; 2005 Oct; 164(1):83-92. PubMed ID: 16099058 [TBL] [Abstract][Full Text] [Related]
3. The decoding of electrosensory systems. Fortune ES Curr Opin Neurobiol; 2006 Aug; 16(4):474-80. PubMed ID: 16837187 [TBL] [Abstract][Full Text] [Related]
4. Electric signals and species recognition in the wave-type gymnotiform fish Apteronotus leptorhynchus. Fugère V; Krahe R J Exp Biol; 2010 Jan; 213(2):225-36. PubMed ID: 20038655 [TBL] [Abstract][Full Text] [Related]
5. Global electrosensory oscillations enhance directional responses of midbrain neurons in eigenmannia. Ramcharitar JU; Tan EW; Fortune ES J Neurophysiol; 2006 Nov; 96(5):2319-26. PubMed ID: 16790600 [TBL] [Abstract][Full Text] [Related]
6. Chirping response of weakly electric knife fish (Apteronotus leptorhynchus) to low-frequency electric signals and to heterospecific electric fish. Dunlap KD; DiBenedictis BT; Banever SR J Exp Biol; 2010 Jul; 213(Pt 13):2234-42. PubMed ID: 20543122 [TBL] [Abstract][Full Text] [Related]
7. Stimulus frequency differentially affects chirping in two species of weakly electric fish: implications for the evolution of signal structure and function. Kolodziejski JA; Sanford SE; Smith GT J Exp Biol; 2007 Jul; 210(Pt 14):2501-9. PubMed ID: 17601954 [TBL] [Abstract][Full Text] [Related]
8. Structure and sexual dimorphism of the electrocommunication signals of the weakly electric fish, Adontosternarchus devenanzii. Zhou M; Smith GT J Exp Biol; 2006 Dec; 209(Pt 23):4809-18. PubMed ID: 17114413 [TBL] [Abstract][Full Text] [Related]
9. Beyond the Jamming Avoidance Response: weakly electric fish respond to the envelope of social electrosensory signals. Stamper SA; Madhav MS; Cowan NJ; Fortune ES J Exp Biol; 2012 Dec; 215(Pt 23):4196-207. PubMed ID: 23136154 [TBL] [Abstract][Full Text] [Related]
10. Electric field interactions in pairs of electric fish: modeling and mimicking naturalistic inputs. Kelly M; Babineau D; Longtin A; Lewis JE Biol Cybern; 2008 Jun; 98(6):479-90. PubMed ID: 18491161 [TBL] [Abstract][Full Text] [Related]
11. Active electroreception in Gymnotus omari: imaging, object discrimination, and early processing of actively generated signals. Caputi AA; Castelló ME; Aguilera PA; Pereira C; Nogueira J; Rodríguez-Cattaneo A; Lezcano C J Physiol Paris; 2008; 102(4-6):256-71. PubMed ID: 18992336 [TBL] [Abstract][Full Text] [Related]
12. From oscillators to modulators: behavioral and neural control of modulations of the electric organ discharge in the gymnotiform fish, Apteronotus leptorhynchus. Zupanc GK J Physiol Paris; 2002; 96(5-6):459-72. PubMed ID: 14692494 [TBL] [Abstract][Full Text] [Related]
13. Chirping and asymmetric jamming avoidance responses in the electric fish Petzold JM; Alves-Gomes JA; Smith GT J Exp Biol; 2018 Sep; 221(Pt 17):. PubMed ID: 30012575 [TBL] [Abstract][Full Text] [Related]
14. The effect of difference frequency on electrocommunication: chirp production and encoding in a species of weakly electric fish, Apteronotus leptorhynchus. Hupé GJ; Lewis JE; Benda J J Physiol Paris; 2008; 102(4-6):164-72. PubMed ID: 18984046 [TBL] [Abstract][Full Text] [Related]
15. Electric organ morphology of Sternopygus macrurus, a wave-type, weakly electric fish with a sexually dimorphic EOD. Mills A; Zakon HH; Marchaterre MA; Bass AH J Neurobiol; 1992 Sep; 23(7):920-32. PubMed ID: 1431851 [TBL] [Abstract][Full Text] [Related]
16. Neural correlations enable invariant coding and perception of natural stimuli in weakly electric fish. Metzen MG; Hofmann V; Chacron MJ Elife; 2016 Apr; 5():. PubMed ID: 27128376 [TBL] [Abstract][Full Text] [Related]
17. The complexity of high-frequency electric fields degrades electrosensory inputs: implications for the jamming avoidance response in weakly electric fish. Shifman AR; Lewis JE J R Soc Interface; 2018 Jan; 15(138):. PubMed ID: 29367237 [TBL] [Abstract][Full Text] [Related]
18. Serotonergic activation of 5HT1A and 5HT2 receptors modulates sexually dimorphic communication signals in the weakly electric fish Apteronotus leptorhynchus. Smith GT; Combs N Horm Behav; 2008 Jun; 54(1):69-82. PubMed ID: 18336816 [TBL] [Abstract][Full Text] [Related]
19. L-citrulline immunoreactivity reveals nitric oxide production in the electromotor and electrosensory systems of the weakly electric fish, Apteronotus leptorhynchus. Smith GT; Allen AR; Oestreich J; Gammie SC Brain Behav Evol; 2005; 65(1):1-13. PubMed ID: 15489561 [TBL] [Abstract][Full Text] [Related]
20. Differential distribution of SK channel subtypes in the brain of the weakly electric fish Apteronotus leptorhynchus. Ellis LD; Maler L; Dunn RJ J Comp Neurol; 2008 Apr; 507(6):1964-78. PubMed ID: 18273887 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]