These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 19874913)

  • 1. Using hierarchical dynamic Bayesian networks to investigate dynamics of organ failure in patients in the Intensive Care Unit.
    Peelen L; de Keizer NF; Jonge Ed; Bosman RJ; Abu-Hanna A; Peek N
    J Biomed Inform; 2010 Apr; 43(2):273-86. PubMed ID: 19874913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rating organ failure via adverse events using data mining in the intensive care unit.
    Silva A; Cortez P; Santos MF; Gomes L; Neves J
    Artif Intell Med; 2008 Jul; 43(3):179-93. PubMed ID: 18486459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sepsis and organ system failure are major determinants of post-intensive care unit mortality.
    Sakr Y; Vincent JL; Ruokonen E; Pizzamiglio M; Installe E; Reinhart K; Moreno R;
    J Crit Care; 2008 Dec; 23(4):475-83. PubMed ID: 19056010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Markov model to describe daily changes in organ failure for patients at the ICU.
    Peelen L; Peek N; de Keizer NF; de Jonge E; Bosman RJ
    Stud Health Technol Inform; 2006; 124():555-60. PubMed ID: 17108576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting survival of patients with sepsis by use of regression and neural network models.
    Flanagan JR; Pittet D; Li N; Thievent B; Suter PM; Wenzel RP
    Clin Perform Qual Health Care; 1996; 4(2):96-103. PubMed ID: 10156949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antithrombin levels, morbidity, and mortality in a surgical intensive care unit.
    Sakr Y; Reinhart K; Hagel S; Kientopf M; Brunkhorst F
    Anesth Analg; 2007 Sep; 105(3):715-23. PubMed ID: 17717229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The outcome of acute renal failure in the intensive care unit according to RIFLE: model application, sensitivity, and predictability.
    Abosaif NY; Tolba YA; Heap M; Russell J; El Nahas AM
    Am J Kidney Dis; 2005 Dec; 46(6):1038-48. PubMed ID: 16310569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of volume and intensive care unit organization on hospital mortality in patients admitted with severe sepsis: a retrospective multicentre cohort study.
    Peelen L; de Keizer NF; Peek N; Scheffer GJ; van der Voort PH; de Jonge E
    Crit Care; 2007; 11(2):R40. PubMed ID: 17378934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery and integration of univariate patterns from daily individual organ-failure scores for intensive care mortality prediction.
    Toma T; Abu-Hanna A; Bosman RJ
    Artif Intell Med; 2008 May; 43(1):47-60. PubMed ID: 18394871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of the Sequential Organ Failure Assessment (SOFA) score to patients with cancer admitted to the intensive care unit.
    Namendys-Silva SA; Texcocano-Becerra J; Herrera-Gómez A
    Am J Hosp Palliat Care; 2009; 26(5):341-6. PubMed ID: 19357377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual intensive care unit (ICU): real-time simulation environment applying hybrid approach using dynamic Bayesian Networks and ODEs.
    Abkai C; Hesser J
    Stud Health Technol Inform; 2009; 142():1-6. PubMed ID: 19377100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [How exactly can we predict the prognosis of COPD].
    Atiş S; Kanik A; Ozgür ES; Eker S; Tümkaya M; Ozge C
    Tuberk Toraks; 2009; 57(3):289-97. PubMed ID: 19787468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequential organ failure assessment score as the determinant of outcome for patients with severe sepsis.
    Vosylius S; Sipylaite J; Ivaskevicius J
    Croat Med J; 2004 Dec; 45(6):715-20. PubMed ID: 15578805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian neural networks for bivariate binary data: an application to prostate cancer study.
    Chakraborty S; Ghosh M; Maiti T; Tewari A
    Stat Med; 2005 Dec; 24(23):3645-62. PubMed ID: 16138362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incidence and clinical effects of intra-abdominal hypertension in critically ill patients.
    Vidal MG; Ruiz Weisser J; Gonzalez F; Toro MA; Loudet C; Balasini C; Canales H; Reina R; Estenssoro E
    Crit Care Med; 2008 Jun; 36(6):1823-31. PubMed ID: 18520642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Severe falciparum malaria: an important cause of multiple organ failure in Indian intensive care unit patients.
    Krishnan A; Karnad DR
    Crit Care Med; 2003 Sep; 31(9):2278-84. PubMed ID: 14501957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room.
    Jaimes F; Farbiarz J; Alvarez D; Martínez C
    Crit Care; 2005 Apr; 9(2):R150-6. PubMed ID: 15774048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of clinical course of organ dysfunction in intensive care.
    Doig CJ; Zygun DA; Fick GH; Laupland KB; Boiteau PJ; Shahpori R; Rosenal T; Sandham JD
    Crit Care Med; 2004 Feb; 32(2):384-90. PubMed ID: 14758152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Survival analysis of 314 episodes of sepsis in medical intensive care unit in university hospital: impact of intensive care unit performance and antimicrobial therapy.
    Degoricija V; Sharma M; Legac A; Gradiser M; Sefer S; Vucicević Z
    Croat Med J; 2006 Jun; 47(3):385-97. PubMed ID: 16758516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epidemiology of severe sepsis occurring in the first 24 hrs in intensive care units in England, Wales, and Northern Ireland.
    Padkin A; Goldfrad C; Brady AR; Young D; Black N; Rowan K
    Crit Care Med; 2003 Sep; 31(9):2332-8. PubMed ID: 14501964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.