These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 19875145)

  • 21. Investigation of the transport and deposition of fullerene (C60) nanoparticles in quartz sands under varying flow conditions.
    Li Y; Wang Y; Pennell KD; Abriola LM
    Environ Sci Technol; 2008 Oct; 42(19):7174-80. PubMed ID: 18939543
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transport of fullerene nanoparticles (nC60) in saturated sand and sandy soil: controlling factors and modeling.
    Zhang L; Hou L; Wang L; Kan AT; Chen W; Tomson MB
    Environ Sci Technol; 2012 Jul; 46(13):7230-8. PubMed ID: 22681192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of sunlight and humic acid on the deposition kinetics of aqueous fullerene nanoparticles (nC60).
    Qu X; Alvarez PJ; Li Q
    Environ Sci Technol; 2012 Dec; 46(24):13455-62. PubMed ID: 23157776
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cotransport of titanium dioxide and fullerene nanoparticles in saturated porous media.
    Cai L; Tong M; Ma H; Kim H
    Environ Sci Technol; 2013 Jun; 47(11):5703-10. PubMed ID: 23662648
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aggregation and deposition behavior of boron nanoparticles in porous media.
    Liu X; Wazne M; Christodoulatos C; Jasinkiewicz KL
    J Colloid Interface Sci; 2009 Feb; 330(1):90-6. PubMed ID: 18977491
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interactions between laponite and microbial biofilms in porous media: implications for colloid transport and biofilm stability.
    Leon-Morales CF; Leis AP; Strathmann M; Flemming HC
    Water Res; 2004 Sep; 38(16):3614-26. PubMed ID: 15325188
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Retention and transport of silica nanoparticles in saturated porous media: effect of concentration and particle size.
    Wang C; Bobba AD; Attinti R; Shen C; Lazouskaya V; Wang LP; Jin Y
    Environ Sci Technol; 2012 Jul; 46(13):7151-8. PubMed ID: 22642719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of extracellular polymeric substances (EPS) on deposition kinetics of bacteria.
    Long G; Zhu P; Shen Y; Tong M
    Environ Sci Technol; 2009 Apr; 43(7):2308-14. PubMed ID: 19452879
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of biofilm structure and total interaction energy on Escherichia coli retention by Pseudomonas aeruginosa biofilm.
    Wu MY; Sendamangalam V; Xue Z; Seo Y
    Biofouling; 2012; 28(10):1119-28. PubMed ID: 23075008
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modelling the structure and function of extracellular polymeric substances in biofilms with new numerical techniques.
    Horn H; Neu TR; Wulkow M
    Water Sci Technol; 2001; 43(6):121-7. PubMed ID: 11381957
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Escherichia coli transport in porous media: influence of cell strain, solution chemistry, and temperature.
    Kim HN; Walker SL
    Colloids Surf B Biointerfaces; 2009 Jun; 71(1):160-7. PubMed ID: 19278837
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interactions between activated sludge extracellular polymeric substances and model carrier surfaces in WWTPs: A combination of QCM-D, AFM and XDLVO prediction.
    Ou Q; Xu Y; Li X; He Q; Liu C; Zhou X; Wu Z; Huang R; Song J; Huangfu X
    Chemosphere; 2020 Aug; 253():126720. PubMed ID: 32464762
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of biofilm on the transport of stabilized zerovalent iron nanoparticles in saturated porous media.
    Lerner RN; Lu Q; Zeng H; Liu Y
    Water Res; 2012 Mar; 46(4):975-85. PubMed ID: 22209258
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles.
    Thio BJ; Zhou D; Keller AA
    J Hazard Mater; 2011 May; 189(1-2):556-63. PubMed ID: 21429667
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transport of industrial PVP-stabilized silver nanoparticles in saturated quartz sand coated with Pseudomonas aeruginosa PAO1 biofilm of variable age.
    Mitzel MR; Tufenkji N
    Environ Sci Technol; 2014; 48(5):2715-23. PubMed ID: 24552618
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distribution and composition of extracellular polymeric substances in membrane-aerated biofilm.
    Li T; Bai R; Liu J
    J Biotechnol; 2008 May; 135(1):52-7. PubMed ID: 18403037
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport and Retention of Free-Living Amoeba Spores in Porous Media: Effects of Operational Parameters and Extracellular Polymeric Substances.
    Jin C; Zhao L; Zhao W; Wang L; Zhu S; Xiao Z; Mo Y; Zhang M; Shu L; Qiu R
    Environ Sci Technol; 2021 Jul; 55(13):8709-8720. PubMed ID: 34138552
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biofilms and extracellular polymeric substances mediate the transport of graphene oxide nanoparticles in saturated porous media.
    Jian-Zhou H; Cheng-Cheng L; Deng-Jun W; Zhou DM
    J Hazard Mater; 2015 Dec; 300():467-474. PubMed ID: 26223021
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of natural organic matter on the transport and deposition of zinc oxide nanoparticles in saturated porous media.
    Jiang X; Tong M; Kim H
    J Colloid Interface Sci; 2012 Nov; 386(1):34-43. PubMed ID: 22840876
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of surface oxidation on the aggregation and deposition kinetics of multiwalled carbon nanotubes in monovalent and divalent electrolytes.
    Yi P; Chen KL
    Langmuir; 2011 Apr; 27(7):3588-99. PubMed ID: 21355574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.