BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 19875147)

  • 1. Transformation of the water soluble fraction from "alpeorujo" by Coriolopsis rigida: the role of laccase in the process and its impact on Azospirillum brasiliense survival.
    Saparrat MC; Jurado M; Díaz R; Romera IG; Martínez MJ
    Chemosphere; 2010 Jan; 78(1):72-6. PubMed ID: 19875147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical and molecular characterization of Coriolopsis rigida laccases involved in transformation of the solid waste from olive oil production.
    Díaz R; Saparrat MC; Jurado M; García-Romera I; Ocampo JA; Martínez MJ
    Appl Microbiol Biotechnol; 2010 Sep; 88(1):133-42. PubMed ID: 20607234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential regulation of laccase gene expression in Coriolopsis rigida LPSC No. 232.
    Saparrat M; Balatti PA; Martínez MJ; Jurado M
    Fungal Biol; 2010; 114(11-12):999-1006. PubMed ID: 21036344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lignin modifying enzymes of Coriolopsis polyzona and their role in olive oil mill wastewaters decolourisation.
    Jaouani A; Tabka MG; Penninckx MJ
    Chemosphere; 2006 Mar; 62(9):1421-30. PubMed ID: 16038961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical characterization and effects on Lepidium sativum of the native and bioremediated components of dry olive mill residue.
    Aranda E; García-Romera I; Ocampo JA; Carbone V; Mari A; Malorni A; Sannino F; De Martino A; Capasso R
    Chemosphere; 2007 Sep; 69(2):229-39. PubMed ID: 17544478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of monomeric phenols in dry mill olive residue by saprobic fungi.
    Sampedro I; Romero C; Ocampo JA; Brenes M; García I
    J Agric Food Chem; 2004 Jul; 52(14):4487-92. PubMed ID: 15237956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laccase induction in fungi and laccase/N-OH mediator systems applied in paper mill effluent.
    Minussi RC; Pastore GM; Durán N
    Bioresour Technol; 2007 Jan; 98(1):158-64. PubMed ID: 16376074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening of fungal isolates and properties of Ganoderma applanatum intended for olive mill wastewater decolourization and dephenolization.
    Matos AJ; Bezerra RM; Dias AA
    Lett Appl Microbiol; 2007 Sep; 45(3):270-5. PubMed ID: 17718838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transgenic tobacco expressing fungal laccase promotes the detoxification of environmental pollutants.
    Sonoki T; Kajita S; Ikeda S; Uesugi M; Tatsumi K; Katayama Y; Iimura Y
    Appl Microbiol Biotechnol; 2005 Apr; 67(1):138-42. PubMed ID: 15549288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme and fungal treatments and a combination thereof reduce olive mill wastewater phytotoxicity on Zea mays L. seeds.
    Quaratino D; D'Annibale A; Federici F; Cereti CF; Rossini F; Fenice M
    Chemosphere; 2007 Jan; 66(9):1627-33. PubMed ID: 17007905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reusing ethyl acetate and aqueous exhausted fractions of dry olive mill residue by saprobe fungi.
    Aranda E; García-Romera I; Ocampo JA; Carbone V; Malorni A; Sannino F; De Martino A; Capasso R
    Chemosphere; 2007 Jan; 66(1):67-74. PubMed ID: 16814842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymerization of bisphenol A by purified laccase from Trametes villosa.
    Uchida H; Fukuda T; Miyamoto H; Kawabata T; Suzuki M; Uwajima T
    Biochem Biophys Res Commun; 2001 Sep; 287(2):355-8. PubMed ID: 11554734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenolic removal in a model olive oil mill wastewater using Pleurotus ostreatus in bioreactor cultures and biological evaluation of the process.
    Aggelis G; Iconomou D; Christou M; Bokas D; Kotzailias S; Christou G; Tsagou V; Papanikolaou S
    Water Res; 2003 Sep; 37(16):3897-904. PubMed ID: 12909108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controversial role of fungal laccases in decreasing the antibacterial effect of olive mill waste-waters.
    de la Rubia T; Lucas M; Martínez J
    Bioresour Technol; 2008 Mar; 99(5):1018-25. PubMed ID: 17462887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of aflatoxin B(1) by fungal laccase enzymes.
    Alberts JF; Gelderblom WC; Botha A; van Zyl WH
    Int J Food Microbiol; 2009 Sep; 135(1):47-52. PubMed ID: 19683355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineered tobacco and microalgae secreting the fungal laccase POXA1b reduce phenol content in olive oil mill wastewater.
    Chiaiese P; Palomba F; Tatino F; Lanzillo C; Pinto G; Pollio A; Filippone E
    Enzyme Microb Technol; 2011 Dec; 49(6-7):540-6. PubMed ID: 22142729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure of Rigidoporus lignosus Laccase containing a full complement of copper ions, reveals an asymmetrical arrangement for the T3 copper pair.
    Garavaglia S; Cambria MT; Miglio M; Ragusa S; Iacobazzi V; Palmieri F; D'Ambrosio C; Scaloni A; Rizzi M
    J Mol Biol; 2004 Oct; 342(5):1519-31. PubMed ID: 15364578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative transformation of natural and synthetic phenolic mixtures by Trametes versicolor laccase.
    Canfora L; Iamarino G; Rao MA; Gianfreda L
    J Agric Food Chem; 2008 Feb; 56(4):1398-407. PubMed ID: 18205305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of phenanthrene by Trametes versicolor and its laccase.
    Han MJ; Choi HT; Song HG
    J Microbiol; 2004 Jun; 42(2):94-8. PubMed ID: 15357301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manganese affects the production of laccase in the basidiomycete Ceriporiopsis subvermispora.
    Manubens A; Canessa P; Folch C; Avila M; Salas L; Vicuña R
    FEMS Microbiol Lett; 2007 Oct; 275(1):139-45. PubMed ID: 17711455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.