BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 19875148)

  • 1. Jaw-muscle fiber architecture in tufted capuchins favors generating relatively large muscle forces without compromising jaw gape.
    Taylor AB; Vinyard CJ
    J Hum Evol; 2009 Dec; 57(6):710-20. PubMed ID: 19875148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Jaw-Muscle Fiber Architecture and Leverage in the Hard-Object Feeding Sooty Mangabey are not Structured to Facilitate Relatively Large Bite Forces Compared to Other Papionins.
    Taylor AB; Terhune CE; Toler M; Holmes M; Ross CF; Vinyard CJ
    Anat Rec (Hoboken); 2018 Feb; 301(2):325-342. PubMed ID: 29330952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationships among jaw-muscle fiber architecture, jaw morphology, and feeding behavior in extant apes and modern humans.
    Taylor AB; Vinyard CJ
    Am J Phys Anthropol; 2013 May; 151(1):120-34. PubMed ID: 23553609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle architecture dynamics modulate performance of the superficial anterior temporalis muscle during chewing in capuchins.
    Laird MF; Granatosky MC; Taylor AB; Ross CF
    Sci Rep; 2020 Apr; 10(1):6410. PubMed ID: 32286442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Craniodental biomechanics and dietary toughness in the genus Cebus.
    Wright BW
    J Hum Evol; 2005 May; 48(5):473-92. PubMed ID: 15857651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The functional correlates of jaw-muscle fiber architecture in tree-gouging and nongouging callitrichid monkeys.
    Taylor AB; Eng CM; Anapol FC; Vinyard CJ
    Am J Phys Anthropol; 2009 Jul; 139(3):353-67. PubMed ID: 19140215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A preliminary analysis of the relationship between jaw-muscle architecture and jaw-muscle electromyography during chewing across primates.
    Vinyard CJ; Taylor AB
    Anat Rec (Hoboken); 2010 Apr; 293(4):572-82. PubMed ID: 20235313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gape drives regional variation in temporalis architectural dynamics in tufted capuchins.
    Laird MF; Iriarte-Diaz J; Byron CD; Granatosky MC; Taylor AB; Ross CF
    Philos Trans R Soc Lond B Biol Sci; 2023 Dec; 378(1891):20220550. PubMed ID: 37839440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of masseter fiber architecture in tree-gouging (Callithrix jacchus) and nongouging (Saguinus oedipus) callitrichids.
    Taylor AB; Vinyard CJ
    J Morphol; 2004 Sep; 261(3):276-85. PubMed ID: 15281057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ontogenetic changes to muscle architectural properties within the jaw-adductor musculature of Macaca fascicularis.
    Dickinson E; Fitton LC; Kupczik K
    Am J Phys Anthropol; 2018 Oct; 167(2):291-310. PubMed ID: 30168867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dietary consistency and plasticity of masseter fiber architecture in postweaning rabbits.
    Taylor AB; Jones KE; Kunwar R; Ravosa MJ
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Oct; 288(10):1105-11. PubMed ID: 16952171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The morphology of the masticatory apparatus facilitates muscle force production at wide jaw gapes in tree-gouging common marmosets (Callithrix jacchus).
    Eng CM; Ward SR; Vinyard CJ; Taylor AB
    J Exp Biol; 2009 Dec; 212(Pt 24):4040-55. PubMed ID: 19946083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ontogenetic changes in bite force and gape in tufted capuchins.
    Laird MF; Kanno CM; Yoakum CB; Fogaça MD; Taylor AB; Ross CF; Chalk-Wilayto J; Holmes MA; Terhune CE; de Oliveira JA
    J Exp Biol; 2023 Aug; 226(15):. PubMed ID: 37439316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Jaw-muscle architecture and mandibular morphology influence relative maximum jaw gapes in the sexually dimorphic Macaca fascicularis.
    Terhune CE; Hylander WL; Vinyard CJ; Taylor AB
    J Hum Evol; 2015 May; 82():145-58. PubMed ID: 25858337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional correlates of fiber architecture of the lateral caudal musculature in prehensile and nonprehensile tails of the platyrrhini (primates) and procyonidae (carnivora).
    Organ JM; Teaford MF; Taylor AB
    Anat Rec (Hoboken); 2009 Jun; 292(6):827-41. PubMed ID: 19402068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dry versus wet and gross: Comparisons between the dry skull method and gross dissection in estimations of jaw muscle cross-sectional area and bite forces in sea otters.
    Law CJ; Mehta RS
    J Morphol; 2019 Nov; 280(11):1706-1713. PubMed ID: 31513299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fallback foraging as a way of life: using dietary toughness to compare the fallback signal among capuchins and implications for interpreting morphological variation.
    Wright BW; Wright KA; Chalk J; Verderane MP; Fragaszy D; Visalberghi E; Izar P; Ottoni EB; Constantino P; Vinyard C
    Am J Phys Anthropol; 2009 Dec; 140(4):687-99. PubMed ID: 19890863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epaxial muscle fiber architecture favors enhanced excursion and power in the leaper Galago senegalensis.
    Huq E; Wall CE; Taylor AB
    J Anat; 2015 Oct; 227(4):524-40. PubMed ID: 26184388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor control of jaw muscles in chewing and in isometric biting with graded narrowing of jaw gape.
    Pröschel PA; Jamal T; Morneburg TR
    J Oral Rehabil; 2008 Oct; 35(10):722-8. PubMed ID: 18482344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Internal architecture, origin-insertion site, and mass of jaw muscles in Old World hamsters.
    Satoh K; Iwaku F
    J Morphol; 2004 Apr; 260(1):101-16. PubMed ID: 15052600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.