BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 19875437)

  • 1. The inositol regulon controls viability in Candida glabrata.
    Bethea EK; Carver BJ; Montedonico AE; Reynolds TB
    Microbiology (Reading); 2010 Feb; 156(Pt 2):452-462. PubMed ID: 19875437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribosomal protein genes in the yeast Candida albicans may be activated by a heterodimeric transcription factor related to Ino2 and Ino4 from S. cerevisiae.
    Hoppen J; Dietz M; Warsow G; Rohde R; Schüller HJ
    Mol Genet Genomics; 2007 Sep; 278(3):317-30. PubMed ID: 17588177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Candida glabrata environmental stress response involves Saccharomyces cerevisiae Msn2/4 orthologous transcription factors.
    Roetzer A; Gregori C; Jennings AM; Quintin J; Ferrandon D; Butler G; Kuchler K; Ammerer G; Schüller C
    Mol Microbiol; 2008 Aug; 69(3):603-20. PubMed ID: 18547390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of reduced co-activator dependence led to target expansion of a starvation response pathway.
    He BZ; Zhou X; O'Shea EK
    Elife; 2017 May; 6():. PubMed ID: 28485712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inner kinetochore of the pathogenic yeast Candida glabrata.
    Stoyan T; Carbon J
    Eukaryot Cell; 2004 Oct; 3(5):1154-63. PubMed ID: 15470243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts.
    Gerwien F; Safyan A; Wisgott S; Hille F; Kaemmer P; Linde J; Brunke S; Kasper L; Hube B
    mBio; 2016 Oct; 7(5):. PubMed ID: 27795405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The CgHaa1-Regulon Mediates Response and Tolerance to Acetic Acid Stress in the Human Pathogen Candida glabrata.
    Bernardo RT; Cunha DV; Wang C; Pereira L; Silva S; Salazar SB; Schröder MS; Okamoto M; Takahashi-Nakaguchi A; Chibana H; Aoyama T; Sá-Correia I; Azeredo J; Butler G; Mira NP
    G3 (Bethesda); 2017 Jan; 7(1):1-18. PubMed ID: 27815348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tec1 and Ste12 transcription factors play a role in adaptation to low pH stress and biofilm formation in the human opportunistic fungal pathogen Candida glabrata.
    Purohit D; Gajjar D
    Int Microbiol; 2022 Nov; 25(4):789-802. PubMed ID: 35829973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Candida glabrata Rpn4-like Protein Complements the RPN4 Deletion in Saccharomyces cerevisiae].
    Karpov DS; Grineva EN; Kiseleva SV; Chelarskaya ES; Spasskaya DS; Karpov VL
    Mol Biol (Mosk); 2019; 53(2):274-281. PubMed ID: 31099777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partial Decay of Thiamine Signal Transduction Pathway Alters Growth Properties of Candida glabrata.
    Iosue CL; Attanasio N; Shaik NF; Neal EM; Leone SG; Cali BJ; Peel MT; Grannas AM; Wykoff DD
    PLoS One; 2016; 11(3):e0152042. PubMed ID: 27015653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mating type-like loci of Candida glabrata.
    Yáñez-Carrillo P; Robledo-Márquez KA; Ramírez-Zavaleta CY; De Las Peñas A; Castaño I
    Rev Iberoam Micol; 2014; 31(1):30-4. PubMed ID: 24252826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutathione biosynthesis in the yeast pathogens Candida glabrata and Candida albicans: essential in C. glabrata, and essential for virulence in C. albicans.
    Yadav AK; Desai PR; Rai MN; Kaur R; Ganesan K; Bachhawat AK
    Microbiology (Reading); 2011 Feb; 157(Pt 2):484-495. PubMed ID: 20966090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The regulation of iron homeostasis in the fungal human pathogen
    Devaux F; Thiébaut A
    Microbiology (Reading); 2019 Oct; 165(10):1041-1060. PubMed ID: 31050635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies.
    Vermitsky JP; Earhart KD; Smith WL; Homayouni R; Edlind TD; Rogers PD
    Mol Microbiol; 2006 Aug; 61(3):704-22. PubMed ID: 16803598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of a Candida glabrata homologue of RAP1, a regulator of transcription and telomere function in Saccharomyces cerevisiae.
    Haw R; Yarragudi AD; Uemura H
    Yeast; 2001 Oct; 18(14):1277-84. PubMed ID: 11571752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From Saccharomyces cerevisiae to Candida glabratain a few easy steps: important adaptations for an opportunistic pathogen.
    Roetzer A; Gabaldón T; Schüller C
    FEMS Microbiol Lett; 2011 Jan; 314(1):1-9. PubMed ID: 20846362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Yap7 is a transcriptional repressor of nitric oxide oxidase in yeasts, which arose from neofunctionalization after whole genome duplication.
    Merhej J; Delaveau T; Guitard J; Palancade B; Hennequin C; Garcia M; Lelandais G; Devaux F
    Mol Microbiol; 2015 Jun; 96(5):951-72. PubMed ID: 25732006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ssn6, an important factor of morphological conversion and virulence in Candida albicans.
    Hwang CS; Oh JH; Huh WK; Yim HS; Kang SO
    Mol Microbiol; 2003 Feb; 47(4):1029-43. PubMed ID: 12581357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription factor substitution during the evolution of fungal ribosome regulation.
    Hogues H; Lavoie H; Sellam A; Mangos M; Roemer T; Purisima E; Nantel A; Whiteway M
    Mol Cell; 2008 Mar; 29(5):552-62. PubMed ID: 18342603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tup1 Paralog
    Bui LN; Iosue CL; Wykoff DD
    mSphere; 2022 Apr; 7(2):e0076521. PubMed ID: 35341317
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.