These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 19875694)

  • 1. Evolution amplified processing with temporally dispersed slow neuronal connectivity in primates.
    Caminiti R; Ghaziri H; Galuske R; Hof PR; Innocenti GM
    Proc Natl Acad Sci U S A; 2009 Nov; 106(46):19551-6. PubMed ID: 19875694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fiber composition in the planum temporale sector of the corpus callosum in chimpanzee and human.
    Innocenti GM; Caminiti R; Hof PR
    Brain Struct Funct; 2010 Aug; 215(2):123-8. PubMed ID: 20734063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The corpus callosum in primates: processing speed of axons and the evolution of hemispheric asymmetry.
    Phillips KA; Stimpson CD; Smaers JB; Raghanti MA; Jacobs B; Popratiloff A; Hof PR; Sherwood CC
    Proc Biol Sci; 2015 Nov; 282(1818):20151535. PubMed ID: 26511047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diameter, length, speed, and conduction delay of callosal axons in macaque monkeys and humans: comparing data from histology and magnetic resonance imaging diffusion tractography.
    Caminiti R; Carducci F; Piervincenzi C; Battaglia-Mayer A; Confalone G; Visco-Comandini F; Pantano P; Innocenti GM
    J Neurosci; 2013 Sep; 33(36):14501-11. PubMed ID: 24005301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Areal differences in diameter and length of corticofugal projections.
    Tomasi S; Caminiti R; Innocenti GM
    Cereb Cortex; 2012 Jun; 22(6):1463-72. PubMed ID: 22302056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axon diameter relates to synaptic bouton size: structural properties define computationally different types of cortical connections in primates.
    Innocenti GM; Caminiti R
    Brain Struct Funct; 2017 Apr; 222(3):1169-1177. PubMed ID: 27372337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pan-mammalian map of interhemispheric brain connections predates the evolution of the corpus callosum.
    Suárez R; Paolino A; Fenlon LR; Morcom LR; Kozulin P; Kurniawan ND; Richards LJ
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9622-9627. PubMed ID: 30181276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual inter-hemispheric processing: constraints and potentialities set by axonal morphology.
    Houzel JC; Milleret C
    J Physiol Paris; 1999; 93(4):271-84. PubMed ID: 10574117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution imaging of distinct human corpus callosum microstructure and topography of structural connectivity to cortices at high field.
    Lee BY; Zhu XH; Li X; Chen W
    Brain Struct Funct; 2019 Mar; 224(2):949-960. PubMed ID: 30511335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origins of callosal projections to the supplementary motor area (SMA): a direct comparison between pre-SMA and SMA-proper in macaque monkeys.
    Liu J; Morel A; Wannier T; Rouiller EM
    J Comp Neurol; 2002 Jan; 443(1):71-85. PubMed ID: 11793348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-sectional analysis of the association between age and corpus callosum size in chimpanzees (Pan troglodytes).
    Hopkins WD; Phillips KA
    Dev Psychobiol; 2010 Mar; 52(2):133-41. PubMed ID: 20091760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of transitory corpus callosum axons projecting to developing cat visual cortex revealed by DiI.
    Elberger AJ
    J Comp Neurol; 1993 Jul; 333(3):326-42. PubMed ID: 8349847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relation of corpus callosum connections to architectonic fields and body surface maps in sensorimotor cortex of new and old world monkeys.
    Killackey HP; Gould HJ; Cusick CG; Pons TP; Kaas JH
    J Comp Neurol; 1983 Oct; 219(4):384-419. PubMed ID: 6643713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Number of axons in the corpus callosum of the Mature macaca nemestrina: increases caused by prenatal exposure to ethanol.
    Miller MW; Astley SJ; Clarren SK
    J Comp Neurol; 1999 Sep; 412(1):123-31. PubMed ID: 10440714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytological and quantitative characteristics of four cerebral commissures in the rhesus monkey.
    Lamantia AS; Rakic P
    J Comp Neurol; 1990 Jan; 291(4):520-37. PubMed ID: 2329189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The functional characterization of callosal connections.
    Innocenti GM; Schmidt K; Milleret C; Fabri M; Knyazeva MG; Battaglia-Mayer A; Aboitiz F; Ptito M; Caleo M; Marzi CA; Barakovic M; Lepore F; Caminiti R
    Prog Neurobiol; 2022 Jan; 208():102186. PubMed ID: 34780864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Timing and origin of the first cortical axons to project through the corpus callosum and the subsequent emergence of callosal projection cells in mouse.
    Ozaki HS; Wahlsten D
    J Comp Neurol; 1998 Oct; 400(2):197-206. PubMed ID: 9766399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transitory corpus callosum axons projecting throughout developing rat visual cortex revealed by Dil.
    Elberger AJ
    Cereb Cortex; 1994; 4(3):279-99. PubMed ID: 8075533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Planum temporale asymmetries correlate with corpus callosum axon fiber density in chimpanzees (Pan troglodytes).
    Hopkins WD; Pilger JF; Storz R; Ambrose A; Hof PR; Sherwood CC
    Behav Brain Res; 2012 Oct; 234(2):248-54. PubMed ID: 22766214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sex and handedness effects on corpus callosum morphology in chimpanzees (Pan troglodytes).
    Dunham LA; Hopkins WD
    Behav Neurosci; 2006 Oct; 120(5):1025-32. PubMed ID: 17014254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.