These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 19875881)
1. Transcriptomic analysis of cold response in tomato fruits identifies dehydrin as a marker of cold stress. Weiss J; Egea-Cortines M J Appl Genet; 2009; 50(4):311-9. PubMed ID: 19875881 [TBL] [Abstract][Full Text] [Related]
2. Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Zhang X; Fowler SG; Cheng H; Lou Y; Rhee SY; Stockinger EJ; Thomashow MF Plant J; 2004 Sep; 39(6):905-19. PubMed ID: 15341633 [TBL] [Abstract][Full Text] [Related]
3. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Zhu M; Chen G; Zhou S; Tu Y; Wang Y; Dong T; Hu Z Plant Cell Physiol; 2014 Jan; 55(1):119-35. PubMed ID: 24265273 [TBL] [Abstract][Full Text] [Related]
4. Molecular cloning of a novel heat induced/chilling tolerance related cDNA in tomato fruit by use of mRNA differential display. Kadyrzhanova DK; Vlachonasios KE; Ververidis P; Dilley DR Plant Mol Biol; 1998 Apr; 36(6):885-95. PubMed ID: 9520279 [TBL] [Abstract][Full Text] [Related]
5. Comparative transcriptome analysis of tomato (Solanum lycopersicum) in response to exogenous abscisic acid. Wang Y; Tao X; Tang XM; Xiao L; Sun JL; Yan XF; Li D; Deng HY; Ma XR BMC Genomics; 2013 Dec; 14(1):841. PubMed ID: 24289302 [TBL] [Abstract][Full Text] [Related]
6. Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. 'Micro-Tom') fruits in an ABA- and osmotic stress-independent manner. Yin YG; Kobayashi Y; Sanuki A; Kondo S; Fukuda N; Ezura H; Sugaya S; Matsukura C J Exp Bot; 2010; 61(2):563-74. PubMed ID: 19995825 [TBL] [Abstract][Full Text] [Related]
7. microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development. Ferreira e Silva GF; Silva EM; Azevedo Mda S; Guivin MA; Ramiro DA; Figueiredo CR; Carrer H; Peres LE; Nogueira FT Plant J; 2014 May; 78(4):604-18. PubMed ID: 24580734 [TBL] [Abstract][Full Text] [Related]
8. Ethylene and cold participate in the regulation of LeCBF1 gene expression in postharvest tomato fruits. Zhao D; Shen L; Fan B; Yu M; Zheng Y; Lv S; Sheng J FEBS Lett; 2009 Oct; 583(20):3329-34. PubMed ID: 19766636 [TBL] [Abstract][Full Text] [Related]
9. Effects of Supplemental Lighting on Potassium Transport and Fruit Coloring of Tomatoes Grown in Hydroponics. Wang W; Liu D; Qin M; Xie Z; Chen R; Zhang Y Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33799970 [TBL] [Abstract][Full Text] [Related]
10. Transcriptional regulation of tocopherol biosynthesis in tomato. Quadrana L; Almeida J; Otaiza SN; Duffy T; Corrêa da Silva JV; de Godoy F; Asís R; Bermúdez L; Fernie AR; Carrari F; Rossi M Plant Mol Biol; 2013 Feb; 81(3):309-25. PubMed ID: 23247837 [TBL] [Abstract][Full Text] [Related]
11. A novel small heat shock protein gene, vis1, contributes to pectin depolymerization and juice viscosity in tomato fruit. Ramakrishna W; Deng Z; Ding CK; Handa AK; Ozminkowski RH Plant Physiol; 2003 Feb; 131(2):725-35. PubMed ID: 12586896 [TBL] [Abstract][Full Text] [Related]
12. RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening. Zhu B; Yang Y; Li R; Fu D; Wen L; Luo Y; Zhu H J Exp Bot; 2015 Aug; 66(15):4483-95. PubMed ID: 25948705 [TBL] [Abstract][Full Text] [Related]
13. A tomato MADS-box transcription factor, SlMADS1, acts as a negative regulator of fruit ripening. Dong T; Hu Z; Deng L; Wang Y; Zhu M; Zhang J; Chen G Plant Physiol; 2013 Oct; 163(2):1026-36. PubMed ID: 24006286 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of lamina outgrowth following Solanum lycopersicum AUXIN RESPONSE FACTOR 10 (SlARF10) derepression. Hendelman A; Buxdorf K; Stav R; Kravchik M; Arazi T Plant Mol Biol; 2012 Apr; 78(6):561-76. PubMed ID: 22287097 [TBL] [Abstract][Full Text] [Related]
15. The transcription factor AREB1 regulates primary metabolic pathways in tomato fruits. Bastías A; Yañez M; Osorio S; Arbona V; Gómez-Cadenas A; Fernie AR; Casaretto JA J Exp Bot; 2014 Jun; 65(9):2351-63. PubMed ID: 24659489 [TBL] [Abstract][Full Text] [Related]
16. Suppressing Type 2C Protein Phosphatases Alters Fruit Ripening and the Stress Response in Tomato. Zhang Y; Li Q; Jiang L; Kai W; Liang B; Wang J; Du Y; Zhai X; Wang J; Zhang Y; Sun Y; Zhang L; Leng P Plant Cell Physiol; 2018 Jan; 59(1):142-154. PubMed ID: 29121241 [TBL] [Abstract][Full Text] [Related]
17. Small heat shock proteins and the postharvest chilling tolerance of tomato fruit. Ré MD; Gonzalez C; Escobar MR; Sossi ML; Valle EM; Boggio SB Physiol Plant; 2017 Feb; 159(2):148-160. PubMed ID: 27545651 [TBL] [Abstract][Full Text] [Related]
18. New insights in the control of antioxidants accumulation in tomato by transcriptomic analyses of genotypes exhibiting contrasting levels of fruit metabolites. Sacco A; Raiola A; Calafiore R; Barone A; Rigano MM BMC Genomics; 2019 Jan; 20(1):43. PubMed ID: 30646856 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of the class D MADS-box gene Sl-AGL11 impacts fleshy tissue differentiation and structure in tomato fruits. Huang B; Routaboul JM; Liu M; Deng W; Maza E; Mila I; Hu G; Zouine M; Frasse P; Vrebalov JT; Giovannoni JJ; Li Z; van der Rest B; Bouzayen M J Exp Bot; 2017 Oct; 68(17):4869-4884. PubMed ID: 28992179 [TBL] [Abstract][Full Text] [Related]
20. Unraveling the roles of CBF1, CBF4 and dehydrin 1 genes in the response of table grapes to high CO₂ levels and low temperature. Fernandez-Caballero C; Rosales R; Romero I; Escribano MI; Merodio C; Sanchez-Ballesta MT J Plant Physiol; 2012 May; 169(7):744-8. PubMed ID: 22341570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]