These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 19876080)

  • 1. Stable chirped black solitary waves in dispersive media withintensity-dependent gain and loss.
    Chen Y
    Opt Lett; 1996 Apr; 21(8):552-4. PubMed ID: 19876080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chirped self-similar solitary waves for the generalized nonlinear Schrödinger equation with distributed two-power-law nonlinearities.
    Triki H; Porsezian K; Senthilnathan K; Nithyanandan K
    Phys Rev E; 2019 Oct; 100(4-1):042208. PubMed ID: 31770930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation.
    Kalashnikov VL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046606. PubMed ID: 19905470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cubic-quintic nonlinear Helmholtz equation: Modulational instability, chirped elliptic and solitary waves.
    Tamilselvan K; Kanna T; Govindarajan A
    Chaos; 2019 Jun; 29(6):063121. PubMed ID: 31266321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the profile of pulses generated by fiber lasers:the highly-chirped positive dispersion regime (similariton).
    Bélanger PA
    Opt Express; 2006 Dec; 14(25):12174-82. PubMed ID: 19529645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bright-Dark and Multi Solitons Solutions of (3 + 1)-Dimensional Cubic-Quintic Complex Ginzburg-Landau Dynamical Equation with Applications and Stability.
    Yue C; Lu D; Arshad M; Nasreen N; Qian X
    Entropy (Basel); 2020 Feb; 22(2):. PubMed ID: 33285977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exact solutions of the generalized nonlinear Schrödinger equation with distributed coefficients.
    Kruglov VI; Peacock AC; Harvey JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056619. PubMed ID: 16089680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exact solitary-wave solutions of chi(2) Ginzburg-Landau equations.
    Crasovan LC; Malomed B; Mihalache D; Lederer F
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jun; 59(6):7173-7. PubMed ID: 11969706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical analysis of solutions of cubic-quintic Ginzburg-Landau equation with gain saturation.
    Shtyrina OV; Yarutkina IA; Skidin AS; Podivilov EV; Fedoruk MP
    Opt Express; 2019 Mar; 27(5):6711-6718. PubMed ID: 30876251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable chirped black solitary waves in dispersive media with intensity-dependent gain and loss: erratum.
    Chen Y
    Opt Lett; 1996 Jul; 21(14):1009. PubMed ID: 19876234
    [No Abstract]   [Full Text] [Related]  

  • 11. Solitary pulses in linearly coupled Ginzburg-Landau equations.
    Malomed BA
    Chaos; 2007 Sep; 17(3):037117. PubMed ID: 17903024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation instability in nonlinear metamaterials modeled by a cubic-quintic complex Ginzburg-Landau equation beyond the slowly varying envelope approximation.
    Megne LT; Tabi CB; Kofane TC
    Phys Rev E; 2020 Oct; 102(4-1):042207. PubMed ID: 33212598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissipative solitons in the discrete Ginzburg-Landau equation with saturable nonlinearity.
    Abdullaev FK; Salerno M
    Phys Rev E; 2018 May; 97(5-1):052208. PubMed ID: 29906973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Existence and stability of solutions of the cubic complex Ginzburg-Landau equation with delayed Raman scattering.
    Facão M; Carvalho MI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022922. PubMed ID: 26382490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients.
    Kruglov VI; Peacock AC; Harvey JD
    Phys Rev Lett; 2003 Mar; 90(11):113902. PubMed ID: 12688927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupled Helmholtz equations: Chirped solitary waves.
    Saha N; Roy B; Khare A
    Chaos; 2021 Nov; 31(11):113104. PubMed ID: 34881603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of chirped and chirp-free similaritons in optical fiber amplifiers.
    Ponomarenko SA; Agrawal GP
    Opt Express; 2007 Mar; 15(6):2963-73. PubMed ID: 19532533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-similar propagation and compression of chirped self-similar waves in asymmetric twin-core fibers with nonlinear gain.
    Soloman Raju T; Panigrahi PK; Porsezian K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046612. PubMed ID: 16383559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multichannel pulse dynamics in a stabilized Ginzburg-Landau system.
    Nistazakis HE; Frantzeskakis DJ; Atai J; Malomed BA; Efremidis N; Hizanidis K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2B):036605. PubMed ID: 11909283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic wave propagation and collision in an excitable circuit model of microtubules.
    Guemkam Ghomsi P; Tameh Berinyoh JT; Moukam Kakmeni FM
    Chaos; 2018 Feb; 28(2):023106. PubMed ID: 29495667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.