These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 19876155)

  • 1. Enhanced beam amplification in a photorefractive Bi(12)TiO(20) crystal by internal reflections.
    Khomenko AV; García-Weidner A; Tentori D
    Opt Lett; 1996 Jun; 21(11):776-8. PubMed ID: 19876155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of Two-Wave Coupling in a Ce:KNSBN Crystal with Optimum Polarization of the Writing Beams.
    Liang BL; Wang Z; Cartwright CM; Gillespie WA; Ding MS; Zhang H
    Appl Opt; 2001 Jul; 40(20):3359-64. PubMed ID: 18360360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incoherent-to-Coherent Conversion by Use of the Photorefractive Beam-Fanning Effect and Amplification by Two-Wave Coupling in a Photorefractive Ba(1-x)Sr(x)TiO(3) Crystal.
    Qiu Y; Zheng Z; Lu T; Huang W; Zhuang J; Tang DY
    Appl Opt; 2001 Feb; 40(5):687-90. PubMed ID: 18357048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplification of optical signals in Bi(12)TiO(20) crystal by photorefractive surface waves.
    Khomenko AV; García-Weidner A; Kamshilin AA
    Opt Lett; 1996 Jul; 21(14):1014-6. PubMed ID: 19876236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-gain, low-noise signal beam amplification in photorefractive BaTiO(3).
    Joseph J; Pillai PK; Singh K
    Appl Opt; 1991 Aug; 30(23):3315-8. PubMed ID: 20706395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarization properties of fanning light in fiberlike bismuth titanium oxide crystals.
    Raita E; Kamshilin AA; Jaaskelainen T
    Opt Lett; 1996 Dec; 21(23):1897-9. PubMed ID: 19881838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical and experimental studies of hologram multiplexing that uses a random wave front generated by photorefractive beam fanning.
    Bunsen M; Okamoto A
    Appl Opt; 2005 Mar; 44(8):1454-63. PubMed ID: 15796245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bidirectional vectorial light amplification in cubic crystals with unshifted photorefractive gratings.
    Rocha-Mendoza I; Khomenko AV
    Opt Lett; 2002 Aug; 27(16):1448-50. PubMed ID: 18026475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speckle-free image amplification by two-wave coupling in a photorefractive crystal.
    Kawata Y; Kawata S
    Appl Opt; 1993 Feb; 32(5):730-6. PubMed ID: 20802747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coherent beam amplification with a photorefractive liquid crystal.
    Khoo IC; Guenther BD; Wood MV; Chen P; Shih MY
    Opt Lett; 1997 Aug; 22(16):1229-31. PubMed ID: 18185803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal evolution of fanning in photorefractive materials.
    Segev M; Engin D; Yariv A; Valley GC
    Opt Lett; 1993 Jun; 18(12):956-8. PubMed ID: 19823257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signal-beam amplification by two-wave mixing in a liquid-crystal light valve.
    Brignon A; Bongrand I; Loiseaux B; Huignard JP
    Opt Lett; 1997 Dec; 22(24):1855-7. PubMed ID: 18188386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexoelectro-optic effect and two-beam energy exchange in a hybrid photorefractive cholesteric cell with a short-pitch horizontal helix.
    Reshetnyak VY; Pinkevych IP; Evans DR
    Phys Rev E; 2018 Jun; 97(6-1):062701. PubMed ID: 30011427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-noise amplification of ultraweak optical wave fronts in photorefractive Bi(12)SiO(20).
    Rajbenbach H; Delboulbé A; Huignard JP
    Opt Lett; 1991 Oct; 16(19):1481-3. PubMed ID: 19777007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-noise preamplifier for multistage photorefractive image amplification.
    Breugnot S; Rajbenbach H; Defour M; Huignard JP
    Opt Lett; 1995 Jul; 20(14):1568-70. PubMed ID: 19862085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-wave mixing and energy transfer in Bi(12) SiO(20) crystals: application to image amplification and vibration analysis.
    Huignard JP; Marrakehi A
    Opt Lett; 1981 Dec; 6(12):622-4. PubMed ID: 19710792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photorefractive beam-steering system that uses energy transfer in a BaTiO(3) crystal for a fiber-array interconnect.
    Mathey P; Mercier R; Pauliat G; Roosen G; Gravey P
    Appl Opt; 1995 Dec; 34(35):8220-9. PubMed ID: 21068939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vectorial two-beam coupling with arbitrary shifted photorefractive gratings: an analytical approach.
    Khomenko AV; Rocha-Mendoza I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066615. PubMed ID: 15697534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong beam coupling in mesogenic materials with photorefractive Bragg gratings.
    Ono H; Kawatsuki N
    Opt Lett; 1999 Feb; 24(3):130-2. PubMed ID: 18071430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Micromorphic Beam Theory for Beams with Elongated Microstructures.
    Shaat M; Ghavanloo E; Emam S
    Sci Rep; 2020 May; 10(1):7984. PubMed ID: 32409677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.