These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 19876312)

  • 1. Design and analysis of a silicon-based antiresonant reflecting optical waveguide chemical sensor.
    Remley KA; Weisshaar A
    Opt Lett; 1996 Aug; 21(16):1241-3. PubMed ID: 19876312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and analysis of an integrated antiresonant reflecting optical waveguide refractive-index sensor.
    Bernini R; Campopiano S; Zeni L
    Appl Opt; 2002 Jan; 41(1):70-3. PubMed ID: 11900448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High efficiency light coupling from antiresonant reflecting optical waveguide to integrated photodetector using an antireflecting layer.
    Baba T; Kokubun Y
    Appl Opt; 1990 Jun; 29(18):2781-92. PubMed ID: 20567329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Regeneration of Si-based ARROW-B Surface Plasmon Resonance Biosensors.
    Hsu HF; Lin YT; Huang YT; Lu MF; Chen CH
    J Med Biol Eng; 2015; 35(3):305-314. PubMed ID: 26167141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of antiresonant reflecting optical waveguide devices by scanning near-field optical microscopy.
    Borrisé X; Jiménez D; Pérez-Murano F; Llobera A; Domínguez C; Barniol N
    J Opt Soc Am A Opt Image Sci Vis; 2000 Dec; 17(12):2243-8. PubMed ID: 11140484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of planar antiresonant reflecting optical waveguide structures on silicon by an Abbe refractometer.
    Smith B; Clark DF; Hamilton C
    Opt Lett; 1995 Oct; 20(20):2084-6. PubMed ID: 19862258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and analysis of mach-Zehnder interferometer sensors based on dual strip antiresonant reflecting optical waveguide structures.
    Hsu SH; Huang YT
    Opt Lett; 2005 Nov; 30(21):2897-9. PubMed ID: 16279462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon antiresonant reflecting optical waveguides.
    Soref RA; Ritter KJ
    Opt Lett; 1990 Jul; 15(14):792-4. PubMed ID: 19768080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated ARROW waveguides with hollow cores.
    Yin D; Schmidt H; Barber J; Hawkins A
    Opt Express; 2004 Jun; 12(12):2710-5. PubMed ID: 19475112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards a biosensor based on anti resonant reflecting optical waveguide fabricated from porous silicon.
    Hiraoui M; Haji L; Guendouz M; Lorrain N; Moadhen A; Oueslati M
    Biosens Bioelectron; 2012; 36(1):212-6. PubMed ID: 22560108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vertical antiresonant reflecting optical waveguide coupler for three-dimensional optical interconnects: optimum design for large tolerance, high coupling efficiency, and short coupling length.
    Sekimoto T; Ikuta S; Pan W; Chu ST; Kokubun Y
    Appl Opt; 2000 Jan; 39(3):426-30. PubMed ID: 18337911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, fabrication, and characterization of Si-based ARROW photonic crystal bend waveguides and power splitters.
    Chen JH; Huang YT; Yang YL; Lu MF; Shieh JM
    Appl Opt; 2012 Aug; 51(24):5876-84. PubMed ID: 22907016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical characterization of arch-shaped ARROW waveguides with liquid cores.
    Yin D; Schmidt H; Barber JP; Lunt EJ; Hawkins AR
    Opt Express; 2005 Dec; 13(26):10564-70. PubMed ID: 19503271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling.
    Renversez G; Boyer P; Sagrini A
    Opt Express; 2006 Jun; 14(12):5682-7. PubMed ID: 19516737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of antiresonant reflecting optical waveguide gratings by use of the method of lines.
    Jamid HA; Akram MN
    Appl Opt; 2003 Jun; 42(18):3488-94. PubMed ID: 12833948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber optofluidic Coriolis flowmeter based on a dual-antiresonant reflecting optical waveguide.
    Li Z; Gao R; Xin X; Zhang H; Chang H; Guo D; Wang F; Zhou S; Yu C; Liu X
    Opt Lett; 2022 Jul; 47(13):3259-3262. PubMed ID: 35776600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Waveguide loss optimization in hollow-core ARROW waveguides.
    Yin D; Barber J; Hawkins A; Schmidt H
    Opt Express; 2005 Nov; 13(23):9331-6. PubMed ID: 19503133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whispering gallery modes of a curved antiresonant reflecting optical waveguide.
    Gong L; Li Q; Chen Y; Chen X
    Appl Opt; 1997 Mar; 36(9):1902-5. PubMed ID: 18250881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Humidity-insensitive temperature sensor based on a quartz capillary anti-resonant reflection optical waveguide.
    Liu S; Ji Y; Cui L; Sun W; Yang J; Li H
    Opt Express; 2017 Aug; 25(16):18929-18939. PubMed ID: 29041084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact spot-size converters with fiber-matched antiresonant reflecting optical waveguides.
    Galarza M; De Mesel K; Baets R; Martínez A; Aramburu C; López-Amo M
    Appl Opt; 2003 Aug; 42(24):4841-6. PubMed ID: 12952328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.