These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 19876368)

  • 1. Rapid acquisition of in vivo biological images by use of optical coherence tomography.
    Tearney GJ; Bouma BE; Boppart SA; Golubovic B; Swanson EA; Fujimoto JG
    Opt Lett; 1996 Sep; 21(17):1408-10. PubMed ID: 19876368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography.
    Bouma BE; Tearney GJ; Bilinsky IP; Golubovic B; Fujimoto JG
    Opt Lett; 1996 Nov; 21(22):1839-41. PubMed ID: 19881819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artifact removal in Fourier-domain optical coherence tomography with a piezoelectric fiber stretcher.
    Vergnole S; Lamouche G; Dufour ML
    Opt Lett; 2008 Apr; 33(7):732-4. PubMed ID: 18382533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography.
    Wang T; Pfeiffer T; Regar E; Wieser W; van Beusekom H; Lancee CT; Springeling G; Krabbendam I; van der Steen AF; Huber R; van Soest G
    Biomed Opt Express; 2015 Dec; 6(12):5021-32. PubMed ID: 26713214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrahigh-resolution optical coherence tomography with a diode-pumped broadband Cr(3+):LiCAF laser.
    Wagenblast P; Ko T; Fujimoto J; Kaertner F; Morgner U
    Opt Express; 2004 Jul; 12(14):3257-63. PubMed ID: 19483850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Swept source optical coherence microscopy using a Fourier domain mode-locked laser.
    Huang SW; Aguirre AD; Huber RA; Adler DC; Fujimoto JG
    Opt Express; 2007 May; 15(10):6210-7. PubMed ID: 19546926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of eye-tracking technology on OCT-angiography imaging quality in age-related macular degeneration.
    Lauermann JL; Treder M; Heiduschka P; Clemens CR; Eter N; Alten F
    Graefes Arch Clin Exp Ophthalmol; 2017 Aug; 255(8):1535-1542. PubMed ID: 28474129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution optical coherence tomography-guided laser ablation of surgical tissue.
    Boppart SA; Herrmann J; Pitris C; Stamper DL; Brezinski ME; Fujimoto JG
    J Surg Res; 1999 Apr; 82(2):275-84. PubMed ID: 10090840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
    Wojtkowski M; Srinivasan V; Fujimoto JG; Ko T; Schuman JS; Kowalczyk A; Duker JS
    Ophthalmology; 2005 Oct; 112(10):1734-46. PubMed ID: 16140383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IMAGE ARTIFACTS IN OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY.
    Spaide RF; Fujimoto JG; Waheed NK
    Retina; 2015 Nov; 35(11):2163-80. PubMed ID: 26428607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography.
    Herz P; Chen Y; Aguirre A; Fujimoto J; Mashimo H; Schmitt J; Koski A; Goodnow J; Petersen C
    Opt Express; 2004 Jul; 12(15):3532-42. PubMed ID: 19483882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involuntary eye motion correction in retinal optical coherence tomography: Hardware or software solution?
    Baghaie A; Yu Z; D'Souza RM
    Med Image Anal; 2017 Apr; 37():129-145. PubMed ID: 28208100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anterior chamber width measurement by high-speed optical coherence tomography.
    Goldsmith JA; Li Y; Chalita MR; Westphal V; Patil CA; Rollins AM; Izatt JA; Huang D
    Ophthalmology; 2005 Feb; 112(2):238-44. PubMed ID: 15691557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel integration of spectral-domain optical-coherence-tomography and laser-ablation system for precision treatment.
    Fan Y; Zhang B; Chang W; Zhang X; Liao H
    Int J Comput Assist Radiol Surg; 2018 Mar; 13(3):411-423. PubMed ID: 28887783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system.
    Mariampillai A; Standish BA; Munce NR; Randall C; Liu G; Jiang JY; Cable AE; Vitkin IA; Yang VX
    Opt Express; 2007 Feb; 15(4):1627-38. PubMed ID: 19532397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classical realization of dispersion-canceled, artifact-free, and background-free optical coherence tomography.
    Ogawa K; Kitano M
    Opt Express; 2016 Apr; 24(8):8280-9. PubMed ID: 27137266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New technology for high-speed and high-resolution optical coherence tomography.
    Fujimoto JG; Bouma B; Tearney GJ; Boppart SA; Pitris C; Southern JF; Brezinski ME
    Ann N Y Acad Sci; 1998 Feb; 838():95-107. PubMed ID: 9511798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT.
    Hillmann D; Bonin T; Lührs C; Franke G; Hagen-Eggert M; Koch P; Hüttmann G
    Opt Express; 2012 Mar; 20(6):6761-76. PubMed ID: 22418560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography.
    Nakamura Y; Makita S; Yamanari M; Itoh M; Yatagai T; Yasuno Y
    Opt Express; 2007 Jun; 15(12):7103-16. PubMed ID: 19547028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency, Type and Cause of Artifacts in Swept-Source and Cirrus HD Optical Coherence Tomography in Cases of Glaucoma and Suspected Glaucoma.
    Lee SY; Kwon HJ; Bae HW; Seo SJ; Lee YH; Hong S; Seong GJ; Kim CY
    Curr Eye Res; 2016 Jul; 41(7):957-64. PubMed ID: 26431251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.