BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19876737)

  • 1. Purkinje-mediated effects in the response of quiescent ventricles to defibrillation shocks.
    Boyle PM; Deo M; Plank G; Vigmond EJ
    Ann Biomed Eng; 2010 Feb; 38(2):456-68. PubMed ID: 19876737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behaviour of the purkinje system during defibrillation-strength shocks.
    Boyle PM; Deo M; Vigmond EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():419-22. PubMed ID: 18001979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of a computer model to investigate sawtooth effects in the Purkinje system.
    Vigmond EJ; Clements C
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):389-99. PubMed ID: 17355050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defibrillation shocks produce different effects on Purkinje fibers and ventricular muscle: implications for successful defibrillation, refibrillation and postshock arrhythmia.
    Li HG; Jones DL; Yee R; Klein GJ
    J Am Coll Cardiol; 1993 Aug; 22(2):607-14. PubMed ID: 8335836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of sotalol and acute ventricular dilatation on action potential duration and dispersion of repolarization after defibrillation shocks.
    Kirchhof P; Milberg P; Eckardt L; Breithardt G; Haverkamp W
    J Cardiovasc Pharmacol; 2003 Apr; 41(4):640-8. PubMed ID: 12658067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arrhythmogenic mechanisms of the Purkinje system during electric shocks: a modeling study.
    Deo M; Boyle P; Plank G; Vigmond E
    Heart Rhythm; 2009 Dec; 6(12):1782-9. PubMed ID: 19959130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Purkinje system in cardiac arrhythmias.
    Deo M; Boyle P; Plank G; Vigmond E
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():149-52. PubMed ID: 19162615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac potential and potential gradient fields generated by single, combined, and sequential shocks during ventricular defibrillation.
    Wharton JM; Wolf PD; Smith WM; Chen PS; Frazier DW; Yabe S; Danieley N; Ideker RE
    Circulation; 1992 Apr; 85(4):1510-23. PubMed ID: 1555291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmural and endocardial Purkinje activation in pigs before local myocardial activation after defibrillation shocks.
    Dosdall DJ; Cheng KA; Huang J; Allison JS; Allred JD; Smith WM; Ideker RE
    Heart Rhythm; 2007 Jun; 4(6):758-65. PubMed ID: 17556199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of defibrillation shock energy and timing on 3-D computer model of heart.
    Province RA; Fishler MG; Thakor NV
    Ann Biomed Eng; 1993; 21(1):19-31. PubMed ID: 8434817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of Purkinje-myocardial coupling during ventricular arrhythmia: a modeling study.
    Behradfar E; Nygren A; Vigmond EJ
    PLoS One; 2014; 9(2):e88000. PubMed ID: 24516576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct measurements of membrane time constant during defibrillation strength shocks.
    Sharma V; Qu F; Nikolski VP; DeGroot P; Efimov IR
    Heart Rhythm; 2007 Apr; 4(4):478-86. PubMed ID: 17399638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane refractoriness and excitation induced in cardiac fibers by monophasic and biphasic shocks.
    Trayanova N; Bray MA
    J Cardiovasc Electrophysiol; 1997 Jul; 8(7):745-57. PubMed ID: 9255682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarity reversal lowers activation time during diastolic field stimulation of the rabbit ventricles: insights into mechanisms.
    Maleckar MM; Woods MC; Sidorov VY; Holcomb MR; Mashburn DN; Wikswo JP; Trayanova NA
    Am J Physiol Heart Circ Physiol; 2008 Oct; 295(4):H1626-33. PubMed ID: 18708441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of ventricular fibrillation by T-wave field-shocks in the isolated perfused rabbit heart: role of nonuniform shock responses.
    Kirchhof PF; Fabritz CL; Behrens S; Franz MR
    Basic Res Cardiol; 1997 Feb; 92(1):35-44. PubMed ID: 9062650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extended charge banking model of dual path shocks for implantable cardioverter defibrillators.
    Dosdall DJ; Sweeney JD
    Biomed Eng Online; 2008 Aug; 7():22. PubMed ID: 18673561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defibrillation of the heart: insights into mechanisms from modelling studies.
    Trayanova N
    Exp Physiol; 2006 Mar; 91(2):323-37. PubMed ID: 16469820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of Purkinje trees from electro-anatomical mapping of the left ventricle using minimal cost geodesics.
    Cárdenes R; Sebastian R; Soto-Iglesias D; Berruezo A; Camara O
    Med Image Anal; 2015 Aug; 24(1):52-62. PubMed ID: 26073786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunnel propagation following defibrillation with ICD shocks: hidden postshock activations in the left ventricular wall underlie isoelectric window.
    Constantino J; Long Y; Ashihara T; Trayanova NA
    Heart Rhythm; 2010 Jul; 7(7):953-61. PubMed ID: 20348028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epicardial activation after unsuccessful defibrillation shocks in dogs.
    Shibata N; Chen PS; Dixon EG; Wolf PD; Danieley ND; Smith WM; Ideker RE
    Am J Physiol; 1988 Oct; 255(4 Pt 2):H902-9. PubMed ID: 3177679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.