These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 19876748)
1. Involvement of Arabidopsis ROF2 (FKBP65) in thermotolerance. Meiri D; Tazat K; Cohen-Peer R; Farchi-Pisanty O; Aviezer-Hagai K; Avni A; Breiman A Plant Mol Biol; 2010 Jan; 72(1-2):191-203. PubMed ID: 19876748 [TBL] [Abstract][Full Text] [Related]
2. Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs. Meiri D; Breiman A Plant J; 2009 Aug; 59(3):387-99. PubMed ID: 19366428 [TBL] [Abstract][Full Text] [Related]
3. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Charng YY; Liu HC; Liu NY; Chi WT; Wang CN; Chang SH; Wang TT Plant Physiol; 2007 Jan; 143(1):251-62. PubMed ID: 17085506 [TBL] [Abstract][Full Text] [Related]
4. Arabidopsis immunophilins ROF1 (AtFKBP62) and ROF2 (AtFKBP65) exhibit tissue specificity, are heat-stress induced, and bind HSP90. Aviezer-Hagai K; Skovorodnikova J; Galigniana M; Farchi-Pisanty O; Maayan E; Bocovza S; Efrat Y; von Koskull-Döring P; Ohad N; Breiman A Plant Mol Biol; 2007 Jan; 63(2):237-55. PubMed ID: 17080288 [TBL] [Abstract][Full Text] [Related]
5. The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Schramm F; Ganguli A; Kiehlmann E; Englich G; Walch D; von Koskull-Döring P Plant Mol Biol; 2006 Mar; 60(5):759-72. PubMed ID: 16649111 [TBL] [Abstract][Full Text] [Related]
6. An autoregulatory loop controlling Arabidopsis HsfA2 expression: role of heat shock-induced alternative splicing. Liu J; Sun N; Liu M; Liu J; Du B; Wang X; Qi X Plant Physiol; 2013 May; 162(1):512-21. PubMed ID: 23503691 [TBL] [Abstract][Full Text] [Related]
7. Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90.1 and ROF1. Thirumalaikumar VP; Gorka M; Schulz K; Masclaux-Daubresse C; Sampathkumar A; Skirycz A; Vierstra RD; Balazadeh S Autophagy; 2021 Sep; 17(9):2184-2199. PubMed ID: 32967551 [TBL] [Abstract][Full Text] [Related]
9. Promoter specificity and interactions between early and late Arabidopsis heat shock factors. Li M; Berendzen KW; Schöffl F Plant Mol Biol; 2010 Jul; 73(4-5):559-67. PubMed ID: 20458611 [TBL] [Abstract][Full Text] [Related]
10. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Ikeda M; Mitsuda N; Ohme-Takagi M Plant Physiol; 2011 Nov; 157(3):1243-54. PubMed ID: 21908690 [TBL] [Abstract][Full Text] [Related]
11. The 26S proteasome function and Hsp90 activity involved in the regulation of HsfA2 expression in response to oxidative stress. Nishizawa-Yokoi A; Tainaka H; Yoshida E; Tamoi M; Yabuta Y; Shigeoka S Plant Cell Physiol; 2010 Mar; 51(3):486-96. PubMed ID: 20147301 [TBL] [Abstract][Full Text] [Related]
12. Sumoylation of Arabidopsis heat shock factor A2 (HsfA2) modifies its activity during acquired thermotholerance. Cohen-Peer R; Schuster S; Meiri D; Breiman A; Avni A Plant Mol Biol; 2010 Sep; 74(1-2):33-45. PubMed ID: 20521085 [TBL] [Abstract][Full Text] [Related]
13. HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress. Nishizawa-Yokoi A; Nosaka R; Hayashi H; Tainaka H; Maruta T; Tamoi M; Ikeda M; Ohme-Takagi M; Yoshimura K; Yabuta Y; Shigeoka S Plant Cell Physiol; 2011 May; 52(5):933-45. PubMed ID: 21471117 [TBL] [Abstract][Full Text] [Related]
15. Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Liu HC; Charng YY Plant Physiol; 2013 Sep; 163(1):276-90. PubMed ID: 23832625 [TBL] [Abstract][Full Text] [Related]
16. LlHSFA1, a novel heat stress transcription factor in lily (Lilium longiflorum), can interact with LlHSFA2 and enhance the thermotolerance of transgenic Arabidopsis thaliana. Gong B; Yi J; Wu J; Sui J; Khan MA; Wu Z; Zhong X; Seng S; He J; Yi M Plant Cell Rep; 2014 Sep; 33(9):1519-33. PubMed ID: 24874231 [TBL] [Abstract][Full Text] [Related]
17. Role of Hsp17.4-CII as coregulator and cytoplasmic retention factor of tomato heat stress transcription factor HsfA2. Port M; Tripp J; Zielinski D; Weber C; Heerklotz D; Winkelhaus S; Bublak D; Scharf KD Plant Physiol; 2004 Jul; 135(3):1457-70. PubMed ID: 15247379 [TBL] [Abstract][Full Text] [Related]
18. Molecular regulation and physiological functions of a novel FaHsfA2c cloned from tall fescue conferring plant tolerance to heat stress. Wang X; Huang W; Liu J; Yang Z; Huang B Plant Biotechnol J; 2017 Feb; 15(2):237-248. PubMed ID: 27500592 [TBL] [Abstract][Full Text] [Related]
19. The protein phosphatase RCF2 and its interacting partner NAC019 are critical for heat stress-responsive gene regulation and thermotolerance in Arabidopsis. Guan Q; Yue X; Zeng H; Zhu J Plant Cell; 2014 Jan; 26(1):438-53. PubMed ID: 24415771 [TBL] [Abstract][Full Text] [Related]
20. AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis. Li C; Chen Q; Gao X; Qi B; Chen N; Xu S; Chen J; Wang X Sci China C Life Sci; 2005 Dec; 48(6):540-50. PubMed ID: 16483133 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]