These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 19877619)

  • 41. Dumbbell probe-mediated cascade isothermal amplification: a novel strategy for label-free detection of microRNAs and its application to real sample assay.
    Bi S; Cui Y; Li L
    Anal Chim Acta; 2013 Jan; 760():69-74. PubMed ID: 23265735
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Magnetic beads based rolling circle amplification-electrochemiluminescence assay for highly sensitive detection of point mutation.
    Su Q; Xing D; Zhou X
    Biosens Bioelectron; 2010 Mar; 25(7):1615-21. PubMed ID: 20034781
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cascade Signal Amplification Based on Copper Nanoparticle-Reported Rolling Circle Amplification for Ultrasensitive Electrochemical Detection of the Prostate Cancer Biomarker.
    Zhu Y; Wang H; Wang L; Zhu J; Jiang W
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2573-81. PubMed ID: 26765624
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A dumbell probe-mediated rolling circle amplification strategy for highly sensitive transcription factor detection.
    Li C; Qiu X; Hou Z; Deng K
    Biosens Bioelectron; 2015 Feb; 64():505-10. PubMed ID: 25299987
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Immunodetection and counting of circulating tumor cells (HepG2) by combining gold nanoparticle labeling, rolling circle amplification and ICP-MS detection of gold.
    Li X; Chen B; He M; Hu B
    Mikrochim Acta; 2019 May; 186(6):344. PubMed ID: 31076917
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mutation detection and single-molecule counting using isothermal rolling-circle amplification.
    Lizardi PM; Huang X; Zhu Z; Bray-Ward P; Thomas DC; Ward DC
    Nat Genet; 1998 Jul; 19(3):225-32. PubMed ID: 9662393
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sensitive detection of nucleic acids with rolling circle amplification and surface-enhanced Raman scattering spectroscopy.
    Hu J; Zhang CY
    Anal Chem; 2010 Nov; 82(21):8991-7. PubMed ID: 20919697
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Additional molecular biological amplification strategy for enhanced sensitivity of monitoring low-abundance protein with dual nanotags.
    Zhang B; Liu B; Zhou J; Tang J; Tang D
    ACS Appl Mater Interfaces; 2013 May; 5(10):4479-85. PubMed ID: 23593961
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rolling circle amplification and circle-to-circle amplification of a specific gene integrated with electrophoretic analysis on a single chip.
    Mahmoudian L; Kaji N; Tokeshi M; Nilsson M; Baba Y
    Anal Chem; 2008 Apr; 80(7):2483-90. PubMed ID: 18307323
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Protein detection using biobarcodes.
    Müller UR
    Mol Biosyst; 2006 Oct; 2(10):470-6. PubMed ID: 17216027
    [TBL] [Abstract][Full Text] [Related]  

  • 51. DNA-based hybridization chain reaction for amplified bioelectronic signal and ultrasensitive detection of proteins.
    Zhang B; Liu B; Tang D; Niessner R; Chen G; Knopp D
    Anal Chem; 2012 Jun; 84(12):5392-9. PubMed ID: 22632712
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nucleic acid sensing by regenerable surface-associated isothermal rolling circle amplification.
    McCarthy EL; Bickerstaff LE; da Cunha MP; Millard PJ
    Biosens Bioelectron; 2007 Feb; 22(7):1236-44. PubMed ID: 16797962
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Triple-helix molecular-switch-actuated exponential rolling circular amplification for ultrasensitive fluorescence detection of miRNAs.
    Zhao Y; Wang Y; Liu S; Wang C; Liang J; Li S; Qu X; Zhang R; Yu J; Huang J
    Analyst; 2019 Aug; 144(17):5245-5253. PubMed ID: 31361292
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ultrasensitive and selective detection of nicotinamide adenine dinucleotide by target-triggered ligation-rolling circle amplification.
    Zhao Y; Qi L; Chen F; Dong Y; Kong Y; Wu Y; Fan C
    Chem Commun (Camb); 2012 Apr; 48(27):3354-6. PubMed ID: 22361740
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Signal amplification of microarray-based immunoassay by optimization of nanoliposome formulations.
    Ruktanonchai U; Nuchuchua O; Charlermroj R; Pattarakankul T; Karoonuthaisiri N
    Anal Biochem; 2012 Oct; 429(2):142-7. PubMed ID: 22809874
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rolling circle amplification for signal enhancement in ovalbumin detection.
    Kobori T; Matsumoto A; Takahashi H; Sugiyama S
    Anal Sci; 2009 Dec; 25(12):1381-3. PubMed ID: 20009321
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Coupling of background reduction with rolling circle amplification for highly sensitive protein detection via terminal protection of small molecule-linked DNA.
    Wang Q; Jiang B; Xie J; Xiang Y; Yuan R; Chai Y
    Analyst; 2013 Oct; 138(19):5751-6. PubMed ID: 23907287
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In situ genotyping individual DNA molecules by target-primed rolling-circle amplification of padlock probes.
    Larsson C; Koch J; Nygren A; Janssen G; Raap AK; Landegren U; Nilsson M
    Nat Methods; 2004 Dec; 1(3):227-32. PubMed ID: 15782198
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ultrasensitive assays for proteins.
    Zhang H; Zhao Q; Li XF; Le XC
    Analyst; 2007 Aug; 132(8):724-37. PubMed ID: 17646870
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of antibody and fluorophore-derivatized liposomes to heterogeneous immunoassays for d-dimer.
    Singh AK; Kilpatrick PK; Carbonell RG
    Biotechnol Prog; 1996; 12(2):272-80. PubMed ID: 8857195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.