BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 19877694)

  • 1. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes.
    Moon HK; Lee SH; Choi HC
    ACS Nano; 2009 Nov; 3(11):3707-13. PubMed ID: 19877694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondria-targeting single-walled carbon nanotubes for cancer photothermal therapy.
    Zhou F; Wu S; Wu B; Chen WR; Xing D
    Small; 2011 Oct; 7(19):2727-35. PubMed ID: 21861293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors.
    Liu X; Tao H; Yang K; Zhang S; Lee ST; Liu Z
    Biomaterials; 2011 Jan; 32(1):144-51. PubMed ID: 20888630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field.
    Gannon CJ; Cherukuri P; Yakobson BI; Cognet L; Kanzius JS; Kittrell C; Weisman RB; Pasquali M; Schmidt HK; Smalley RE; Curley SA
    Cancer; 2007 Dec; 110(12):2654-65. PubMed ID: 17960610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of cellular internalization of antibody-targeted carbon nanotubes in the photothermal ablation of breast cancer cells.
    Marches R; Mikoryak C; Wang RH; Pantano P; Draper RK; Vitetta ES
    Nanotechnology; 2011 Mar; 22(9):095101. PubMed ID: 21258147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy.
    Tsai MF; Chang SH; Cheng FY; Shanmugam V; Cheng YS; Su CH; Yeh CS
    ACS Nano; 2013 Jun; 7(6):5330-42. PubMed ID: 23651267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoshell-enabled photothermal cancer therapy: impending clinical impact.
    Lal S; Clare SE; Halas NJ
    Acc Chem Res; 2008 Dec; 41(12):1842-51. PubMed ID: 19053240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TiO2 nanotubes as a therapeutic agent for cancer thermotherapy.
    Lee C; Hong C; Kim H; Kang J; Zheng HM
    Photochem Photobiol; 2010; 86(4):981-9. PubMed ID: 20408983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of water soluble single-walled carbon nanotube graft copolymers.
    Zhao B; Hu H; Yu A; Perea D; Haddon RC
    J Am Chem Soc; 2005 Jun; 127(22):8197-203. PubMed ID: 15926849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power.
    Yang K; Wan J; Zhang S; Tian B; Zhang Y; Liu Z
    Biomaterials; 2012 Mar; 33(7):2206-14. PubMed ID: 22169821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dye-conjugated single-walled carbon nanotubes induce photothermal therapy under the guidance of near-infrared imaging.
    Liang X; Shang W; Chi C; Zeng C; Wang K; Fang C; Chen Q; Liu H; Fan Y; Tian J
    Cancer Lett; 2016 Dec; 383(2):243-249. PubMed ID: 27693557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperthermic effect of multi-walled carbon nanotubes stimulated with near infrared irradiation for anticancer therapy: in vitro studies.
    Burlaka A; Lukin S; Prylutska S; Remeniak O; Prylutskyy Y; Shuba M; Maksimenko S; Ritter U; Scharff P
    Exp Oncol; 2010 Mar; 32(1):48-50. PubMed ID: 20332757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photothermal ablation of tumor cells using a single-walled carbon nanotube-peptide composite.
    Hashida Y; Tanaka H; Zhou S; Kawakami S; Yamashita F; Murakami T; Umeyama T; Imahori H; Hashida M
    J Control Release; 2014 Jan; 173():59-66. PubMed ID: 24211651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice.
    Akiyama Y; Mori T; Katayama Y; Niidome T
    J Control Release; 2009 Oct; 139(1):81-4. PubMed ID: 19538994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic anticancer effect of RNAi and photothermal therapy mediated by functionalized single-walled carbon nanotubes.
    Wang L; Shi J; Zhang H; Li H; Gao Y; Wang Z; Wang H; Li L; Zhang C; Chen C; Zhang Z; Zhang Y
    Biomaterials; 2013 Jan; 34(1):262-74. PubMed ID: 23046752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced cell uptake via non-covalent decollation of a single-walled carbon nanotube-DNA hybrid with polyethylene glycol-grafted poly(l-lysine) labeled with an Alexa-dye and its efficient uptake in a cancer cell.
    Fujigaya T; Yamamoto Y; Kano A; Maruyama A; Nakashima N
    Nanoscale; 2011 Oct; 3(10):4352-8. PubMed ID: 21931919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chirality enriched (12,1) and (11,3) single-walled carbon nanotubes for biological imaging.
    Diao S; Hong G; Robinson JT; Jiao L; Antaris AL; Wu JZ; Choi CL; Dai H
    J Am Chem Soc; 2012 Oct; 134(41):16971-4. PubMed ID: 23033937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction.
    Kam NW; O'Connell M; Wisdom JA; Dai H
    Proc Natl Acad Sci U S A; 2005 Aug; 102(33):11600-5. PubMed ID: 16087878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-dependent photothermal anticancer effects of carbon-based photoresponsive nanomaterials.
    Miao W; Shim G; Lee S; Oh YK
    Biomaterials; 2014 Apr; 35(13):4058-65. PubMed ID: 24508077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.