These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 1987781)

  • 21. Nuclear magnetic resonance evaluation of metabolic and respiratory support of work load in intact rabbit hearts.
    Lewandowski ED
    Circ Res; 1992 Mar; 70(3):576-82. PubMed ID: 1537093
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TCA cycle kinetics in the rat heart by analysis of (13)C isotopomers using indirect (1)H.
    Carvalho RA; Zhao P; Wiegers CB; Jeffrey FM; Malloy CR; Sherry AD
    Am J Physiol Heart Circ Physiol; 2001 Sep; 281(3):H1413-21. PubMed ID: 11514314
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relationship between cardiac function and substrate oxidation in hearts of diabetic rats.
    Chatham JC; Forder JR
    Am J Physiol; 1997 Jul; 273(1 Pt 2):H52-8. PubMed ID: 9249474
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of calcium-induced workload transitions and fatty acid supply on myocardial substrate selection.
    Ala-Rämi A; Ylihautala M; Ingman P; Hassinen IE
    Metabolism; 2005 Mar; 54(3):410-20. PubMed ID: 15736122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct noninvasive estimation of myocardial tricarboxylic acid cycle flux in vivo using hyperpolarized ¹³C magnetic resonance.
    Bastiaansen JA; Cheng T; Lei H; Gruetter R; Comment A
    J Mol Cell Cardiol; 2015 Oct; 87():129-37. PubMed ID: 26297113
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NMR-visible ATP and Pi in normoxic and reperfused rat hearts: a quantitative study.
    Humphrey SM; Garlick PB
    Am J Physiol; 1991 Jan; 260(1 Pt 2):H6-12. PubMed ID: 1992810
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amiodarone pretreatment effects on ischemic isovolumic rat hearts: a P-31 nuclear magnetic resonance study of intracellular pH and high-energy phosphates contents evolutions.
    Vander Elst L; Goudemant JF; Mouton J; Chatelain P; Van Haverbeke Y; Muller RN
    J Cardiovasc Pharmacol; 1990 Mar; 15(3):377-85. PubMed ID: 1691360
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of the pH of cardioplegic solutions on intracellular pH, high-energy phosphates, and postarrest performance. Protective effects of acidotic, glutamate-containing cardioplegic perfusates.
    Bernard M; Menasche P; Canioni P; Fontanarava E; Grousset C; Piwnica A; Cozzone P
    J Thorac Cardiovasc Surg; 1985 Aug; 90(2):235-42. PubMed ID: 2410746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NMR visibility of Pi in perfused rat hearts is affected by changes in substrate and contractility.
    Garlick PB; Townsend RM
    Am J Physiol; 1992 Aug; 263(2 Pt 2):H497-502. PubMed ID: 1510146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glutamine restores myocardial cytochrome C oxidase activity and improves cardiac function during experimental sepsis.
    Groening P; Huang Z; La Gamma EF; Levy RJ
    JPEN J Parenter Enteral Nutr; 2011 Mar; 35(2):249-54. PubMed ID: 21378254
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tricarboxylic acid cycle metabolites during ischemia in isolated perfused rat heart.
    Peuhkurinen KJ; Takala TE; Nuutinen EM; Hassinen IE
    Am J Physiol; 1983 Feb; 244(2):H281-8. PubMed ID: 6824095
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glycolysis is necessary to preserve myocardial Ca2+ homeostasis during beta-adrenergic stimulation.
    Nakamura K; Kusuoka H; Ambrosio G; Becker LC
    Am J Physiol; 1993 Mar; 264(3 Pt 2):H670-8. PubMed ID: 8384419
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy metabolism of the hypertrophied heart studied by 31P nuclear magnetic resonance.
    Aussedat J; Lortet S; Ray A; Rossi A; Heckman M; Zimmer HG; Vincent M; Sassart J
    Cardioscience; 1992 Dec; 3(4):233-9. PubMed ID: 1477290
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Study of the protective effect of phosphocreatine on the ischemic myocardium during cardioplegia using the P-31 NMR method].
    Kupriianov VV; Shteĭnshneĭder AIa; Lakomkin VL; Ruuge EK; Kapel'ko VI
    Biull Vsesoiuznogo Kardiol Nauchn Tsentra AMN SSSR; 1985; 8(1):14-9. PubMed ID: 4005052
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sepsis alters skeletal muscle energetics and membrane function.
    Jacobs DO; Kobayashi T; Imagire J; Grant C; Kesselly B; Wilmore DW
    Surgery; 1991 Aug; 110(2):318-25; 325-6. PubMed ID: 1650038
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts.
    Scholz TD; Laughlin MR; Balaban RS; Kupriyanov VV; Heineman FW
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H82-91. PubMed ID: 7840306
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [31P magnetic-resonance spectroscopy in cardiac diseases].
    Mazaev VV; Stukalova OV; Ternovoĭ SK; Chazova IE
    Kardiologiia; 2012; 52(3):67-73. PubMed ID: 22839445
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Role of macrophage migration inhibitory factor in septic shock-induced cardiovascular dysfunction: experiment with rats].
    Wang FZ; Jing L; Chen J; Huang YY
    Zhonghua Yi Xue Za Zhi; 2007 Mar; 87(11):768-73. PubMed ID: 17565848
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Elimination and replenishment of tricarboxylic acid-cycle intermediates in myocardium.
    Nuutinen EM; Peuhkurinen KJ; Pietiläinen EP; Hiltunen JK; Hassinen IE
    Biochem J; 1981 Mar; 194(3):867-75. PubMed ID: 6796067
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glycolytic and tricarboxylic acid cycle intermediates during cardiac arrest and recovery in eu-, hyper- and hypothyroid rats.
    Fath PA; Kako KJ
    J Mol Cell Cardiol; 1973 Aug; 5(4):359-73. PubMed ID: 4355338
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.