These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 19877920)

  • 1. Fabricating tubular devices from polymers of lactic and glycolic Acid for tissue engineering.
    Mooney DJ; Breuer C; McNamara K; Vacanti JP; Langer R
    Tissue Eng; 1995; 1(2):107-18. PubMed ID: 19877920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and fabrication of biodegradable polymer devices to engineer tubular tissues.
    Mooney DJ; Organ G; Vacanti JP; Langer R
    Cell Transplant; 1994; 3(2):203-10. PubMed ID: 7516806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilized polyglycolic acid fibre-based tubes for tissue engineering.
    Mooney DJ; Mazzoni CL; Breuer C; McNamara K; Hern D; Vacanti JP; Langer R
    Biomaterials; 1996 Jan; 17(2):115-24. PubMed ID: 8624388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier.
    Makadia HK; Siegel SJ
    Polymers (Basel); 2011 Sep; 3(3):1377-1397. PubMed ID: 22577513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile fabrication of poly(L-lactic acid)-grafted hydroxyapatite/poly(lactic-co-glycolic acid) scaffolds by Pickering high internal phase emulsion templates.
    Hu Y; Gu X; Yang Y; Huang J; Hu M; Chen W; Tong Z; Wang C
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17166-75. PubMed ID: 25243730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring properties of microsphere-based poly(lactic-co-glycolic acid) scaffolds.
    Clark A; Milbrandt TA; Hilt JZ; Puleo DA
    J Biomed Mater Res A; 2014 Feb; 102(2):348-57. PubMed ID: 23533090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An enhanced strength retention poly(glycolic acid)-poly(L-lactic acid) copolymer for internal fixation: in vitro characterization of hydrolysis.
    Pietrzak WS; Kumar M
    J Craniofac Surg; 2009 Sep; 20(5):1533-7. PubMed ID: 19816292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro hydrolytic degradation of hydroxyl-functionalized poly(alpha-hydroxy acid)s.
    Leemhuis M; Kruijtzer JA; Nostrum CF; Hennink WE
    Biomacromolecules; 2007 Sep; 8(9):2943-9. PubMed ID: 17715961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical properties and dual drug delivery application of poly(lactic-co-glycolic acid) scaffolds fabricated with a poly(β-amino ester) porogen.
    Clark A; Milbrandt TA; Hilt JZ; Puleo DA
    Acta Biomater; 2014 May; 10(5):2125-32. PubMed ID: 24424269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multilayered films fabricated from plasmid DNA and a side-chain functionalized poly(beta-amino ester): surface-type erosion and sequential release of multiple plasmid constructs from surfaces.
    Zhang J; Montañez SI; Jewell CM; Lynn DM
    Langmuir; 2007 Oct; 23(22):11139-46. PubMed ID: 17887783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering.
    Lee SH; Kim BS; Kim SH; Choi SW; Jeong SI; Kwon IK; Kang SW; Nikolovski J; Mooney DJ; Han YK; Kim YH
    J Biomed Mater Res A; 2003 Jul; 66(1):29-37. PubMed ID: 12833428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of in vitro spermatogenesis using poly(D,L-lactic-co-glycolic acid) (PLGA)-based macroporous biodegradable scaffolds.
    Lee JH; Oh JH; Lee JH; Kim MR; Min CK
    J Tissue Eng Regen Med; 2011 Feb; 5(2):130-7. PubMed ID: 20603864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable sponges for hepatocyte transplantation.
    Mooney DJ; Park S; Kaufmann PM; Sano K; McNamara K; Vacanti JP; Langer R
    J Biomed Mater Res; 1995 Aug; 29(8):959-65. PubMed ID: 7593039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S; Lee GY; Wong JY; Desai TA
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A "room-temperature" injection molding/particulate leaching approach for fabrication of biodegradable three-dimensional porous scaffolds.
    Wu L; Jing D; Ding J
    Biomaterials; 2006 Jan; 27(2):185-91. PubMed ID: 16098580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering.
    Kim SS; Sun Park M; Jeon O; Yong Choi C; Kim BS
    Biomaterials; 2006 Mar; 27(8):1399-409. PubMed ID: 16169074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of perivascular poly(lactic-co-glycolic acid) films containing paclitaxel.
    Jackson JK; Smith J; Letchford K; Babiuk KA; Machan L; Signore P; Hunter WL; Wang K; Burt HM
    Int J Pharm; 2004 Sep; 283(1-2):97-109. PubMed ID: 15363506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prevascularization of porous biodegradable polymers.
    Mikos AG; Sarakinos G; Lyman MD; Ingber DE; Vacanti JP; Langer R
    Biotechnol Bioeng; 1993 Sep; 42(6):716-23. PubMed ID: 18613104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering.
    Mistry AS; Cheng SH; Yeh T; Christenson E; Jansen JA; Mikos AG
    J Biomed Mater Res A; 2009 Apr; 89(1):68-79. PubMed ID: 18428800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.