These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 19878278)

  • 21. "Feeding time" for the brain: a matter of clocks.
    Feillet CA; Albrecht U; Challet E
    J Physiol Paris; 2006; 100(5-6):252-60. PubMed ID: 17629684
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleus-specific effects of meal duration on daily profiles of Period1 and Period2 protein expression in rats housed under restricted feeding.
    Verwey M; Amir S
    Neuroscience; 2011 Sep; 192():304-11. PubMed ID: 21767615
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Food as circadian time cue for appetitive behavior.
    Mistlberger RE
    F1000Res; 2020; 9():. PubMed ID: 32047614
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Food-anticipatory circadian rhythms: concepts and methods.
    Mistlberger RE
    Eur J Neurosci; 2009 Nov; 30(9):1718-29. PubMed ID: 19878279
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Food reward without a timing component does not alter the timing of activity under positive energy balance.
    van der Vinne V; Akkerman J; Lanting GD; Riede SJ; Hut RA
    Neuroscience; 2015 Sep; 304():260-5. PubMed ID: 26215921
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrasonic vocalizations in rats anticipating circadian feeding schedules.
    Opiol H; Pavlovski I; Michalik M; Mistlberger RE
    Behav Brain Res; 2015 May; 284():42-50. PubMed ID: 25677650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modifications of local cerebral glucose utilization during circadian food-anticipatory activity.
    de Vasconcelos AP; Bartol-Munier I; Feillet CA; Gourmelen S; Pevet P; Challet E
    Neuroscience; 2006 May; 139(2):741-8. PubMed ID: 16472928
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Peripheral oscillators: the driving force for food-anticipatory activity.
    Escobar C; Cailotto C; Angeles-Castellanos M; Delgado RS; Buijs RM
    Eur J Neurosci; 2009 Nov; 30(9):1665-75. PubMed ID: 19878276
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The SCN-independent clocks, methamphetamine and food restriction.
    Honma K; Honma S
    Eur J Neurosci; 2009 Nov; 30(9):1707-17. PubMed ID: 19878275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The relationship between nutrition and circadian rhythms in mammals.
    Froy O
    Front Neuroendocrinol; 2007; 28(2-3):61-71. PubMed ID: 17451793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Circadian effects of timed meals (and other rewards).
    Davidson AJ; Tataroglu O; Menaker M
    Methods Enzymol; 2005; 393():509-23. PubMed ID: 15817309
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The interrelations among feeding, circadian rhythms and ageing.
    Froy O; Miskin R
    Prog Neurobiol; 2007 Jun; 82(3):142-50. PubMed ID: 17482337
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Circadian regulation of sleep-wake cycles and food anticipation].
    Nakamura W
    Brain Nerve; 2012 Jun; 64(6):647-56. PubMed ID: 22647472
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid damping of food-entrained circadian rhythm of clock gene expression in clock-defective peripheral tissues under fasting conditions.
    Horikawa K; Minami Y; Iijima M; Akiyama M; Shibata S
    Neuroscience; 2005; 134(1):335-43. PubMed ID: 15961241
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exposure of pregnant rats to restricted feeding schedule synchronizes the SCN clocks of their fetuses under constant light but not under a light-dark regime.
    Nováková M; Sládek M; Sumová A
    J Biol Rhythms; 2010 Oct; 25(5):350-60. PubMed ID: 20876815
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of feeding time on daily rhythms of neuropeptide and clock gene expression in the rat hypothalamus.
    Wang D; Opperhuizen AL; Reznick J; Turner N; Su Y; Cooney GJ; Kalsbeek A
    Brain Res; 2017 Sep; 1671():93-101. PubMed ID: 28709906
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Progressive anticipation in behavior and brain activation of rats exposed to scheduled daily palatable food.
    Blancas A; González-García SD; Rodríguez K; Escobar C
    Neuroscience; 2014 Dec; 281():44-53. PubMed ID: 25255933
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Circadian food anticipatory activity: Entrainment limits and scalar properties re-examined.
    Petersen CC; Patton DF; Parfyonov M; Mistlberger RE
    Behav Neurosci; 2014 Dec; 128(6):689-702. PubMed ID: 25285457
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sucrose modifies c-fos mRNA expression in the brain of rats maintained on feeding schedules.
    Mitra A; Lenglos C; Martin J; Mbende N; Gagné A; Timofeeva E
    Neuroscience; 2011 Sep; 192():459-74. PubMed ID: 21718761
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Restricted access to food, but not sucrose, saccharine, or salt, synchronizes the expression of Period2 protein in the limbic forebrain.
    Waddington Lamont E; Harbour VL; Barry-Shaw J; Renteria Diaz L; Robinson B; Stewart J; Amir S
    Neuroscience; 2007 Jan; 144(2):402-11. PubMed ID: 17067744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.