BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 19878289)

  • 1. Differential regulations of wing and ovarian development and heterochronic changes of embryogenesis between morphs in wing polyphenism of the vetch aphid.
    Ishikawa A; Miura T
    Evol Dev; 2009; 11(6):680-8. PubMed ID: 19878289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of wing polyphenism, aphid genotype and host plant chemistry on energy metabolism of the grain aphid, Sitobion avenae.
    Castañeda LE; Figueroa CC; Bacigalupe LD; Nespolo RF
    J Insect Physiol; 2010 Dec; 56(12):1920-4. PubMed ID: 20801126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening of upregulated genes induced by high density in the vetch aphid Megoura crassicauda.
    Ishikawa A; Ishikawa Y; Okada Y; Miyazaki S; Miyakawa H; Koshikawa S; Brisson JA; Miura T
    J Exp Zool A Ecol Genet Physiol; 2012 Mar; 317(3):194-203. PubMed ID: 22514053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibiotics, primary symbionts and wing polyphenism in three aphid species.
    Hardie J; Leckstein P
    Insect Biochem Mol Biol; 2007 Aug; 37(8):886-90. PubMed ID: 17628287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Juvenile hormone titer and wing-morph differentiation in the vetch aphid Megoura crassicauda.
    Ishikawa A; Gotoh H; Abe T; Miura T
    J Insect Physiol; 2013 Apr; 59(4):444-9. PubMed ID: 23434762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Common genome-wide patterns of transcript accumulation underlying the wing polyphenism and polymorphism in the pea aphid (Acyrthosiphon pisum).
    Brisson JA; Davis GK; Stern DL
    Evol Dev; 2007; 9(4):338-46. PubMed ID: 17651358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facultative Endosymbiont Serratia symbiotica Inhibits the Apterization of Pea Aphid To Enhance Its Spread.
    Kang ZW; Zhang M; Cao HH; Guo SS; Liu FH; Liu TX
    Microbiol Spectr; 2022 Dec; 10(6):e0406622. PubMed ID: 36445124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insulin-Related Peptide 5 is Involved in Regulating Embryo Development and Biochemical Composition in Pea Aphid with Wing Polyphenism.
    Guo SS; Zhang M; Liu TX
    Front Physiol; 2016; 7():31. PubMed ID: 26903881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of trade-offs between sexual and asexual phases and the role of reproductive plasticity in the genetic architecture of aphid life histories.
    Nespolo RF; Halkett F; Figueroa CC; Plantegenest M; Simon JC
    Evolution; 2009 Sep; 63(9):2402-12. PubMed ID: 19473379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aphid polyphenisms: trans-generational developmental regulation through viviparity.
    Ogawa K; Miura T
    Front Physiol; 2014; 5():1. PubMed ID: 24478714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wing dimorphism in aphids.
    Braendle C; Davis GK; Brisson JA; Stern DL
    Heredity (Edinb); 2006 Sep; 97(3):192-9. PubMed ID: 16823401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic variation for an aphid wing polyphenism is genetically linked to a naturally occurring wing polymorphism.
    Braendle C; Friebe I; Caillaud MC; Stern DL
    Proc Biol Sci; 2005 Mar; 272(1563):657-64. PubMed ID: 15817441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroanatomical correlates of mobility: Sensory brain centres are bigger in winged than in wingless parthenogenetic pea aphid females.
    Gadenne C; Groh C; Grübel K; Joschinski J; Krauss J; Krieger J; Rössler W; Anton S
    Arthropod Struct Dev; 2019 Sep; 52():100883. PubMed ID: 31568972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sitobion avenae alatae infected by Pandora neoaphidis: their flight ability, post-flight colonization, and mycosis transmission to progeny colonies.
    Chen C; Feng MG
    J Invertebr Pathol; 2004 Jul; 86(3):117-23. PubMed ID: 15261776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of symbiotic bacteria on reproductive strategies and wing polyphenism in pea aphids responding to stress.
    Reyes ML; Laughton AM; Parker BJ; Wichmann H; Fan M; Sok D; Hrček J; Acevedo T; Gerardo NM
    J Anim Ecol; 2019 Apr; 88(4):601-611. PubMed ID: 30629747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-term consequences of reproductive mode variation on the genetic architecture of energy metabolism and life-history traits in the pea aphid.
    Artacho P; Figueroa CC; Cortes PA; Simon JC; Nespolo RF
    J Insect Physiol; 2011 Jul; 57(7):986-94. PubMed ID: 21539843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dynamics of developmental system drift in the gene network underlying wing polyphenism in ants: a mathematical model.
    Nahmad M; Glass L; Abouheif E
    Evol Dev; 2008; 10(3):360-74. PubMed ID: 18460097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. miR-147b-modulated expression of vestigial regulates wing development in the bird cherry-oat aphid Rhopalosiphum padi.
    Fan Y; Li X; Mohammed AAAH; Liu Y; Gao X
    BMC Genomics; 2020 Jan; 21(1):71. PubMed ID: 31969125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of natural enemies on wing induction in Aphis fabae and Megoura viciae (Hemiptera: Aphididae).
    Kunert G; Schmoock-Ortlepp K; Reissmann U; Creutzburg S; Weisser WW
    Bull Entomol Res; 2008 Feb; 98(1):59-62. PubMed ID: 18076776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Host acceptance by aphids: probing and larviposition behaviour of the bird cherry-oat aphid, Rhopalosiphum padi on host and non-host plants.
    Nam KJ; Hardie J
    J Insect Physiol; 2012 May; 58(5):660-8. PubMed ID: 22343318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.