These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 19878289)
1. Differential regulations of wing and ovarian development and heterochronic changes of embryogenesis between morphs in wing polyphenism of the vetch aphid. Ishikawa A; Miura T Evol Dev; 2009; 11(6):680-8. PubMed ID: 19878289 [TBL] [Abstract][Full Text] [Related]
2. Effects of wing polyphenism, aphid genotype and host plant chemistry on energy metabolism of the grain aphid, Sitobion avenae. Castañeda LE; Figueroa CC; Bacigalupe LD; Nespolo RF J Insect Physiol; 2010 Dec; 56(12):1920-4. PubMed ID: 20801126 [TBL] [Abstract][Full Text] [Related]
3. Screening of upregulated genes induced by high density in the vetch aphid Megoura crassicauda. Ishikawa A; Ishikawa Y; Okada Y; Miyazaki S; Miyakawa H; Koshikawa S; Brisson JA; Miura T J Exp Zool A Ecol Genet Physiol; 2012 Mar; 317(3):194-203. PubMed ID: 22514053 [TBL] [Abstract][Full Text] [Related]
4. Antibiotics, primary symbionts and wing polyphenism in three aphid species. Hardie J; Leckstein P Insect Biochem Mol Biol; 2007 Aug; 37(8):886-90. PubMed ID: 17628287 [TBL] [Abstract][Full Text] [Related]
5. Juvenile hormone titer and wing-morph differentiation in the vetch aphid Megoura crassicauda. Ishikawa A; Gotoh H; Abe T; Miura T J Insect Physiol; 2013 Apr; 59(4):444-9. PubMed ID: 23434762 [TBL] [Abstract][Full Text] [Related]
6. Common genome-wide patterns of transcript accumulation underlying the wing polyphenism and polymorphism in the pea aphid (Acyrthosiphon pisum). Brisson JA; Davis GK; Stern DL Evol Dev; 2007; 9(4):338-46. PubMed ID: 17651358 [TBL] [Abstract][Full Text] [Related]
7. Facultative Endosymbiont Serratia symbiotica Inhibits the Apterization of Pea Aphid To Enhance Its Spread. Kang ZW; Zhang M; Cao HH; Guo SS; Liu FH; Liu TX Microbiol Spectr; 2022 Dec; 10(6):e0406622. PubMed ID: 36445124 [TBL] [Abstract][Full Text] [Related]
8. Insulin-Related Peptide 5 is Involved in Regulating Embryo Development and Biochemical Composition in Pea Aphid with Wing Polyphenism. Guo SS; Zhang M; Liu TX Front Physiol; 2016; 7():31. PubMed ID: 26903881 [TBL] [Abstract][Full Text] [Related]
9. Evolution of trade-offs between sexual and asexual phases and the role of reproductive plasticity in the genetic architecture of aphid life histories. Nespolo RF; Halkett F; Figueroa CC; Plantegenest M; Simon JC Evolution; 2009 Sep; 63(9):2402-12. PubMed ID: 19473379 [TBL] [Abstract][Full Text] [Related]
10. Aphid polyphenisms: trans-generational developmental regulation through viviparity. Ogawa K; Miura T Front Physiol; 2014; 5():1. PubMed ID: 24478714 [TBL] [Abstract][Full Text] [Related]
12. Genetic variation for an aphid wing polyphenism is genetically linked to a naturally occurring wing polymorphism. Braendle C; Friebe I; Caillaud MC; Stern DL Proc Biol Sci; 2005 Mar; 272(1563):657-64. PubMed ID: 15817441 [TBL] [Abstract][Full Text] [Related]
13. Neuroanatomical correlates of mobility: Sensory brain centres are bigger in winged than in wingless parthenogenetic pea aphid females. Gadenne C; Groh C; Grübel K; Joschinski J; Krauss J; Krieger J; Rössler W; Anton S Arthropod Struct Dev; 2019 Sep; 52():100883. PubMed ID: 31568972 [TBL] [Abstract][Full Text] [Related]
14. Sitobion avenae alatae infected by Pandora neoaphidis: their flight ability, post-flight colonization, and mycosis transmission to progeny colonies. Chen C; Feng MG J Invertebr Pathol; 2004 Jul; 86(3):117-23. PubMed ID: 15261776 [TBL] [Abstract][Full Text] [Related]
15. The influence of symbiotic bacteria on reproductive strategies and wing polyphenism in pea aphids responding to stress. Reyes ML; Laughton AM; Parker BJ; Wichmann H; Fan M; Sok D; Hrček J; Acevedo T; Gerardo NM J Anim Ecol; 2019 Apr; 88(4):601-611. PubMed ID: 30629747 [TBL] [Abstract][Full Text] [Related]
16. Short-term consequences of reproductive mode variation on the genetic architecture of energy metabolism and life-history traits in the pea aphid. Artacho P; Figueroa CC; Cortes PA; Simon JC; Nespolo RF J Insect Physiol; 2011 Jul; 57(7):986-94. PubMed ID: 21539843 [TBL] [Abstract][Full Text] [Related]
17. The dynamics of developmental system drift in the gene network underlying wing polyphenism in ants: a mathematical model. Nahmad M; Glass L; Abouheif E Evol Dev; 2008; 10(3):360-74. PubMed ID: 18460097 [TBL] [Abstract][Full Text] [Related]
18. miR-147b-modulated expression of vestigial regulates wing development in the bird cherry-oat aphid Rhopalosiphum padi. Fan Y; Li X; Mohammed AAAH; Liu Y; Gao X BMC Genomics; 2020 Jan; 21(1):71. PubMed ID: 31969125 [TBL] [Abstract][Full Text] [Related]
19. The influence of natural enemies on wing induction in Aphis fabae and Megoura viciae (Hemiptera: Aphididae). Kunert G; Schmoock-Ortlepp K; Reissmann U; Creutzburg S; Weisser WW Bull Entomol Res; 2008 Feb; 98(1):59-62. PubMed ID: 18076776 [TBL] [Abstract][Full Text] [Related]
20. Host acceptance by aphids: probing and larviposition behaviour of the bird cherry-oat aphid, Rhopalosiphum padi on host and non-host plants. Nam KJ; Hardie J J Insect Physiol; 2012 May; 58(5):660-8. PubMed ID: 22343318 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]