BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 19878404)

  • 1. Evolution of distorted pellicle patterns in rigid photosynthetic euglenids (phacus dujardin).
    Esson HJ; Leander BS
    J Eukaryot Microbiol; 2010; 57(1):19-32. PubMed ID: 19878404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model for the morphogenesis of strip reduction patterns in phototrophic euglenids: evidence for heterochrony in pellicle evolution.
    Esson HJ; Leander BS
    Evol Dev; 2006; 8(4):378-88. PubMed ID: 16805902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenetic Relationships and Morphological Character Evolution of Photosynthetic Euglenids (Excavata) Inferred from Taxon-rich Analyses of Five Genes.
    Karnkowska A; Bennett MS; Watza D; Kim JI; Zakryś B; Triemer RE
    J Eukaryot Microbiol; 2015; 62(3):362-73. PubMed ID: 25377266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstructing euglenoid evolutionary relationships using three genes: nuclear SSU and LSU, and chloroplast SSU rDNA sequences and the description of Euglenaria gen. nov. (Euglenophyta).
    Linton EW; Karnkowska-Ishikawa A; Kim JI; Shin W; Bennett MS; Kwiatowski J; Zakryś B; Triemer RE
    Protist; 2010 Oct; 161(4):603-19. PubMed ID: 20434949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macroevolution of complex cytoskeletal systems in euglenids.
    Leander BS; Esson HJ; Breglia SA
    Bioessays; 2007 Oct; 29(10):987-1000. PubMed ID: 17876783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delimiting species in the Phacus longicauda complex (Euglenida) through morphological and molecular analyses.
    Łukomska-Kowalczyk M; Karnkowska A; Milanowski R; Łach Ł; Zakryś B
    J Phycol; 2015 Dec; 51(6):1147-57. PubMed ID: 26987009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary Origin of Euglena.
    Zakryś B; Milanowski R; Karnkowska A
    Adv Exp Med Biol; 2017; 979():3-17. PubMed ID: 28429314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dinoflagellate, Euglenid, or Cercomonad? The ultrastructure and molecular phylogenetic position of Protaspis grandis n. sp.
    Hoppenrath M; Leander BS
    J Eukaryot Microbiol; 2006; 53(5):327-42. PubMed ID: 16968450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining molecular data with classical morphology for uncultured phagotrophic euglenids (Excavata): a single-cell approach.
    Lax G; Simpson AG
    J Eukaryot Microbiol; 2013; 60(6):615-25. PubMed ID: 23879661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructure and molecular phylogenetic position of Heteronema scaphurum: a eukaryovorous euglenid with a cytoproct.
    Breglia SA; Yubuki N; Leander BS
    J Eukaryot Microbiol; 2013; 60(2):107-20. PubMed ID: 23317460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Phylogeny and Cryptic Diversity of the Genus Phacus (Phacaceae, Euglenophyceae) and the Descriptions of Seven New Species.
    Kim JI; Shin W
    J Phycol; 2014 Oct; 50(5):948-59. PubMed ID: 26988648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative morphology of the euglenid pellicle. I. Patterns of strips and pores.
    Leander BS; Farmer MA
    J Eukaryot Microbiol; 2000; 47(5):469-79. PubMed ID: 11001144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ploeotids Represent Much of the Phylogenetic Diversity of Euglenids.
    Lax G; Lee WJ; Eglit Y; Simpson A
    Protist; 2019 Apr; 170(2):233-257. PubMed ID: 31102975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphostasis in a novel eukaryote illuminates the evolutionary transition from phagotrophy to phototrophy: description of Rapaza viridis n. gen. et sp. (Euglenozoa, Euglenida).
    Yamaguchi A; Yubuki N; Leander BS
    BMC Evol Biol; 2012 Mar; 12():29. PubMed ID: 22401606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary structure.
    Marin B; Palm A; Klingberg M; Melkonian M
    Protist; 2003 Apr; 154(1):99-145. PubMed ID: 12812373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Did trypanosomatid parasites have photosynthetic ancestors?
    Leander BS
    Trends Microbiol; 2004 Jun; 12(6):251-8. PubMed ID: 15165602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Description of a new planktonic mixotrophic dinoflagellate Paragymnodinium shiwhaense n. gen., n. sp. from the coastal waters off Western Korea: morphology, pigments, and ribosomal DNA gene sequence.
    Kang NS; Jeong HJ; Moestrup Ø; Shin W; Nam SW; Park JY; De Salas MF; Kim KW; Noh JH
    J Eukaryot Microbiol; 2010; 57(2):121-44. PubMed ID: 20487128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Balanion masanensis n. sp. (ciliophora: prostomatea) from the coastal waters of Korea: morphology and small subunit ribosomal RNA gene sequence.
    Kim JS; Jeong HJ; Lynn DH; Park JY; Lim YW; Shin W
    J Eukaryot Microbiol; 2007; 54(6):482-94. PubMed ID: 18070326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative morphology of the euglenid pellicle. II. Diversity of strip substructure.
    Leander BS; Farmer MA
    J Eukaryot Microbiol; 2001; 48(2):202-17. PubMed ID: 12095109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructure, life cycle and molecular phylogenetic position of a novel marine sand-dwelling cercozoan: Clautriavia biflagellata n. sp.
    Chantangsi C; Leander BS
    Protist; 2010 Jan; 161(1):133-47. PubMed ID: 19880348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.