These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 19878680)

  • 1. Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae.
    Hohmann S
    FEBS Lett; 2009 Dec; 583(24):4025-9. PubMed ID: 19878680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The high-osmolarity glycerol (HOG) and cell wall integrity (CWI) signalling pathways interplay: a yeast dialogue between MAPK routes.
    Rodríguez-Peña JM; García R; Nombela C; Arroyo J
    Yeast; 2010 Aug; 27(8):495-502. PubMed ID: 20641030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robustness and fragility in the yeast high osmolarity glycerol (HOG) signal-transduction pathway.
    Krantz M; Ahmadpour D; Ottosson LG; Warringer J; Waltermann C; Nordlander B; Klipp E; Blomberg A; Hohmann S; Kitano H
    Mol Syst Biol; 2009; 5():281. PubMed ID: 19536204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation.
    Tamás MJ; Luyten K; Sutherland FC; Hernandez A; Albertyn J; Valadi H; Li H; Prior BA; Kilian SG; Ramos J; Gustafsson L; Thevelein JM; Hohmann S
    Mol Microbiol; 1999 Feb; 31(4):1087-104. PubMed ID: 10096077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing pathways periodically.
    Elston TC
    Sci Signal; 2008 Oct; 1(42):pe47. PubMed ID: 18941138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negative feedback-loop mechanisms regulating HOG- and pheromone-MAPK signaling in yeast.
    Vázquez-Ibarra A; Rodríguez-Martínez G; Guerrero-Serrano G; Kawasaki L; Ongay-Larios L; Coria R
    Curr Genet; 2020 Oct; 66(5):867-880. PubMed ID: 32564133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The high-osmolarity glycerol- and cell wall integrity-MAP kinase pathways of Saccharomyces cerevisiae are involved in adaptation to the action of killer toxin HM-1.
    Miyamoto M; Furuichi Y; Komiyama T
    Yeast; 2012 Nov; 29(11):475-85. PubMed ID: 23065846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A second osmosensing signal transduction pathway in yeast. Hypotonic shock activates the PKC1 protein kinase-regulated cell integrity pathway.
    Davenport KR; Sohaskey M; Kamada Y; Levin DE; Gustin MC
    J Biol Chem; 1995 Dec; 270(50):30157-61. PubMed ID: 8530423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model-based study delineating the roles of the two signaling branches of Saccharomyces cerevisiae, Sho1 and Sln1, during adaptation to osmotic stress.
    Parmar JH; Bhartiya S; Venkatesh KV
    Phys Biol; 2009 Aug; 6(3):036019. PubMed ID: 19657148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The molecular chaperone Hsp90 is required for high osmotic stress response in Saccharomyces cerevisiae.
    Yang XX; Maurer KC; Molanus M; Mager WH; Siderius M; van der Vies SM
    FEMS Yeast Res; 2006 Mar; 6(2):195-204. PubMed ID: 16487343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formal representation of the high osmolarity glycerol pathway in yeast.
    Kühn C; Prasad KV; Klipp E; Gennemark P
    Genome Inform; 2010 Jan; 22():69-83. PubMed ID: 20238420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-osmolarity signalling in Saccharomyces cerevisiae is modulated in a carbon-source-dependent fashion.
    Siderius M; Rots E; Mager WH
    Microbiology (Reading); 1997 Oct; 143 ( Pt 10)():3241-3250. PubMed ID: 9353925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signal integration in budding yeast.
    Waltermann C; Klipp E
    Biochem Soc Trans; 2010 Oct; 38(5):1257-64. PubMed ID: 20863295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of cell volume changes upon hyperosmotic stress in Saccharomyces cerevisiae.
    Petelenz-Kurdziel E; Eriksson E; Smedh M; Beck C; Hohmann S; Goksör M
    Integr Biol (Camb); 2011 Nov; 3(11):1120-6. PubMed ID: 22012314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae.
    Nevoigt E; Stahl U
    FEMS Microbiol Rev; 1997 Nov; 21(3):231-41. PubMed ID: 9451815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The high osmolarity glycerol (HOG) pathway in fungi
    Yaakoub H; Sanchez NS; Ongay-Larios L; Courdavault V; Calenda A; Bouchara JP; Coria R; Papon N
    Crit Rev Microbiol; 2022 Nov; 48(6):657-695. PubMed ID: 34893006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aspergillus nidulans HOG pathway is activated only by two-component signalling pathway in response to osmotic stress.
    Furukawa K; Hoshi Y; Maeda T; Nakajima T; Abe K
    Mol Microbiol; 2005 Jun; 56(5):1246-61. PubMed ID: 15882418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transcriptional response of Saccharomyces cerevisiae to Pichia membranifaciens killer toxin.
    Santos A; Del Mar Alvarez M; Mauro MS; Abrusci C; Marquina D
    J Biol Chem; 2005 Dec; 280(51):41881-92. PubMed ID: 16204237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New aspects on phosphate sensing and signalling in Saccharomyces cerevisiae.
    Mouillon JM; Persson BL
    FEMS Yeast Res; 2006 Mar; 6(2):171-6. PubMed ID: 16487340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nested autoinhibitory feedbacks alter the resistance of homeostatic adaptive biochemical networks.
    Schaber J; Lapytsko A; Flockerzi D
    J R Soc Interface; 2014 Feb; 11(91):20130971. PubMed ID: 24307567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.