BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 19878687)

  • 1. Elastic energy storage in an unmineralized collagen type I molecular model with explicit solvation and water infiltration.
    Kwansa AL; Freeman JW
    J Theor Biol; 2010 Feb; 262(4):691-7. PubMed ID: 19878687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical implications of the domain structure of fiber-forming collagens: comparison of the molecular and fibrillar flexibilities of the alpha1-chains found in types I-III collagen.
    Silver FH; Horvath I; Foran DJ
    J Theor Biol; 2002 May; 216(2):243-54. PubMed ID: 12079374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of mineral deposition in turkey tendons and self-assembled collagen fibers using mechanical techniques.
    Freeman JW; Silver FH
    Connect Tissue Res; 2004; 45(3):131-41. PubMed ID: 15512767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastic energy storage in unmineralized and mineralized extracellular matrices (ECMs): a comparison between molecular modeling and experimental measurements.
    Freeman JW; Silver FH
    J Theor Biol; 2004 Aug; 229(3):371-81. PubMed ID: 15234204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of prestrain and collagen fibril alignment on in vitro mineralization of self-assembled collagen fibers.
    Freeman JW; Silver FH
    Connect Tissue Res; 2005; 46(2):107-15. PubMed ID: 16019421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling loop reorganization free energies of acetylcholinesterase: a comparison of explicit and implicit solvent models.
    Olson MA
    Proteins; 2004 Dec; 57(4):645-50. PubMed ID: 15481087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free energy landscape of protein folding in water: explicit vs. implicit solvent.
    Zhou R
    Proteins; 2003 Nov; 53(2):148-61. PubMed ID: 14517967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscoelastic properties of self-assembled type I collagen fibers: molecular basis of elastic and viscous behaviors.
    Silver FH; Ebrahimi A; Snowhill PB
    Connect Tissue Res; 2002; 43(4):569-80. PubMed ID: 12685863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On modelling nonlinear viscoelastic effects in ligaments.
    Peña E; Peña JA; Doblaré M
    J Biomech; 2008 Aug; 41(12):2659-66. PubMed ID: 18672245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A constituent-based model for the nonlinear viscoelastic behavior of ligaments.
    Vena P; Gastaldi D; Contro R
    J Biomech Eng; 2006 Jun; 128(3):449-57. PubMed ID: 16706595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscoelastic properties of model segments of collagen molecules.
    Gautieri A; Vesentini S; Redaelli A; Buehler MJ
    Matrix Biol; 2012 Mar; 31(2):141-9. PubMed ID: 22204879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscoelastic properties of acid- and alkaline-treated human dermis: a correlation between total surface charge and elastic modulus.
    Seehra GP; Silver FH
    Skin Res Technol; 2006 Aug; 12(3):190-8. PubMed ID: 16827694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elastic and viscoelastic properties of a type I collagen fiber.
    Sopakayang R; De Vita R; Kwansa A; Freeman JW
    J Theor Biol; 2012 Jan; 293():197-205. PubMed ID: 22037061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the solvent representation on vibrational entropy calculations: generalized born versus distance-dependent dielectric model.
    Kopitz H; Cashman DA; Pfeiffer-Marek S; Gohlke H
    J Comput Chem; 2012 Apr; 33(9):1004-13. PubMed ID: 22298332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.
    Vorobjev YN; Almagro JC; Hermans J
    Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An efficient mean solvation force model for use in molecular dynamics simulations of proteins in aqueous solution.
    Fraternali F; Van Gunsteren WF
    J Mol Biol; 1996 Mar; 256(5):939-48. PubMed ID: 8601844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density functional theory of solvation and its relation to implicit solvent models.
    Ramirez R; Borgis D
    J Phys Chem B; 2005 Apr; 109(14):6754-63. PubMed ID: 16851760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of altered mechanical load conditions on the structure and function of cultured tendon fascicles.
    Abreu EL; Leigh D; Derwin KA
    J Orthop Res; 2008 Mar; 26(3):364-73. PubMed ID: 17972327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A DFT study of solvation effects on the tautomeric equilibrium and catalytic ylide generation of thiamin models.
    Alstrup Lie M; Schiøtt B
    J Comput Chem; 2008 May; 29(7):1037-47. PubMed ID: 18058864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.