These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Specimen diameter and "side artifacts" in cancellous bone evaluated using end-constrained elastic tension. Lievers WB; Petryshyn AC; Poljsak AS; Waldman SD; Pilkey AK Bone; 2010 Aug; 47(2):371-7. PubMed ID: 20380901 [TBL] [Abstract][Full Text] [Related]
3. Effects of end boundary conditions and specimen geometry on the viscoelastic properties of cancellous bone measured by dynamic mechanical analysis. Dong XN; Yeni YN; Les CM; Fyhrie DP J Biomed Mater Res A; 2004 Mar; 68(3):573-83. PubMed ID: 14762938 [TBL] [Abstract][Full Text] [Related]
4. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. Papini M; Zdero R; Schemitsch EH; Zalzal P J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093 [TBL] [Abstract][Full Text] [Related]
5. The validation of a compression testing method for cancellous human jawbone by high-resolution finite element modeling. Stoppie N; Van Cleynenbreugel T; Wevers M; Vander Sloten J; Naert I Int J Oral Maxillofac Implants; 2007; 22(3):436-45. PubMed ID: 17622011 [TBL] [Abstract][Full Text] [Related]
6. On the applicability of bovine morsellized cortico-cancellous bone as a substitute for human morsellized cortico-cancellous bone for in vitro mechanical testing. Lunde KB; Foss OA; Skallerud B J Biomech; 2008 Dec; 41(16):3469-74. PubMed ID: 18995858 [TBL] [Abstract][Full Text] [Related]
7. The influence of design parameters on calcar stresses following femoral head arthroplasty. Cook SD; Klawitter JJ; Weinstein AM J Biomed Mater Res; 1980 Mar; 14(2):133-44. PubMed ID: 7358741 [TBL] [Abstract][Full Text] [Related]
8. Postfailure modulus strongly affects microcracking and mechanical property change in human iliac cancellous bone: a study using a 2D nonlinear finite element method. Wang X; Zauel RR; Fyhrie DP J Biomech; 2008 Aug; 41(12):2654-8. PubMed ID: 18672244 [TBL] [Abstract][Full Text] [Related]
9. [Mechanical properties of therapeutic sand upon femur and its finite element analysis]. You B; Mahemuti D; Kuerban K Zhonghua Yi Xue Za Zhi; 2009 Nov; 89(41):2946-8. PubMed ID: 20137657 [TBL] [Abstract][Full Text] [Related]
10. Experimental method for the measurement of the elastic modulus of trabecular bone tissue. Mente PL; Lewis JL J Orthop Res; 1989; 7(3):456-61. PubMed ID: 2703939 [TBL] [Abstract][Full Text] [Related]
11. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. Baggi L; Cappelloni I; Di Girolamo M; Maceri F; Vairo G J Prosthet Dent; 2008 Dec; 100(6):422-31. PubMed ID: 19033026 [TBL] [Abstract][Full Text] [Related]
12. Apparent Young's modulus of human radius using inverse finite-element method. Bosisio MR; Talmant M; Skalli W; Laugier P; Mitton D J Biomech; 2007; 40(9):2022-8. PubMed ID: 17097663 [TBL] [Abstract][Full Text] [Related]
13. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Pahr DH; Zysset PK Biomech Model Mechanobiol; 2008 Dec; 7(6):463-76. PubMed ID: 17972122 [TBL] [Abstract][Full Text] [Related]
14. Use of compact sandwich specimen to determine the critical strain energy release rate of bone. Paruchuru SP; Wang X; Agrawal CM Biomed Mater Eng; 2007; 17(4):249-53. PubMed ID: 17611301 [TBL] [Abstract][Full Text] [Related]
15. Contribution of inter-site variations in architecture to trabecular bone apparent yield strains. Morgan EF; Bayraktar HH; Yeh OC; Majumdar S; Burghardt A; Keaveny TM J Biomech; 2004 Sep; 37(9):1413-20. PubMed ID: 15275849 [TBL] [Abstract][Full Text] [Related]
16. Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation. Chevalier Y; Pahr D; Allmer H; Charlebois M; Zysset P J Biomech; 2007; 40(15):3333-40. PubMed ID: 17572433 [TBL] [Abstract][Full Text] [Related]
17. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. Tada S; Stegaroiu R; Kitamura E; Miyakawa O; Kusakari H Int J Oral Maxillofac Implants; 2003; 18(3):357-68. PubMed ID: 12814310 [TBL] [Abstract][Full Text] [Related]
18. Effect of mineral dissolution from bone specimens on the viscoelastic properties of cortical bone. Sasaki N; Nozoe T; Nishihara R; Fukui A J Biomech; 2008 Dec; 41(16):3511-4. PubMed ID: 18996531 [TBL] [Abstract][Full Text] [Related]
19. Specimen size effect in the volumetric shrinkage of cancellous bone measured at two levels of dehydration. Lievers WB; Lee V; Arsenault SM; Waldman SD; Pilkey AK J Biomech; 2007; 40(9):1903-9. PubMed ID: 17054965 [TBL] [Abstract][Full Text] [Related]
20. Comparative evaluation of implant designs: influence of diameter, length, and taper on strains in the alveolar crest. A three-dimensional finite-element analysis. Petrie CS; Williams JL Clin Oral Implants Res; 2005 Aug; 16(4):486-94. PubMed ID: 16117775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]