These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 19878900)

  • 21. Vertebroplasty in the treatment of back pain.
    Muto M; Muto E; Izzo R; Diano AA; Lavanga A; Di Furia U
    Radiol Med; 2005 Mar; 109(3):208-19. PubMed ID: 15775889
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomechanical effects of unipedicular vertebroplasty on intact vertebrae.
    Higgins KB; Harten RD; Langrana NA; Reiter MF
    Spine (Phila Pa 1976); 2003 Jul; 28(14):1540-7; discussion 1548. PubMed ID: 12865841
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of damage to trabecular bone of the osteoporotic human acetabulum at small strains using nonlinear micro-finite element analyses.
    Ding H; Zhu ZA; Dai KR
    Chin Med J (Engl); 2009 Sep; 122(17):2041-7. PubMed ID: 19781393
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of high bone turnover on the biomechanical properties of the L3 vertebra in an ovine model of early stage osteoporosis.
    Kennedy OD; Brennan O; Mahony NJ; Rackard SM; O'Brien FJ; Taylor D; Lee CT
    Spine (Phila Pa 1976); 2008 Nov; 33(23):2518-23. PubMed ID: 18978592
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heavy ion irradiation and unloading effects on mouse lumbar vertebral microarchitecture, mechanical properties and tissue stresses.
    Alwood JS; Yumoto K; Mojarrab R; Limoli CL; Almeida EA; Searby ND; Globus RK
    Bone; 2010 Aug; 47(2):248-55. PubMed ID: 20466089
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Finite element analysis of cancellous bone failure in the vertebral body of healthy and osteoporotic subjects.
    Boccaccio A; Vena P; Gastaldi D; Franzoso G; Pietrabissa R; Pappalettere C
    Proc Inst Mech Eng H; 2008 Oct; 222(7):1023-36. PubMed ID: 19024151
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A pilot finite element study of an osteoporotic L1-vertebra compared to one with normal T-score.
    Provatidis C; Vossou C; Koukoulis I; Balanika A; Baltas C; Lyritis G
    Comput Methods Biomech Biomed Engin; 2010; 13(2):185-95. PubMed ID: 19657799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Osteoporosis changes the amount of vertebral trabecular bone at risk of fracture but not the vertebral load distribution.
    Homminga J; Weinans H; Gowin W; Felsenberg D; Huiskes R
    Spine (Phila Pa 1976); 2001 Jul; 26(14):1555-61. PubMed ID: 11462085
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On prediction of the strength levels and failure patterns of human vertebrae using quantitative computed tomography (QCT)-based finite element method.
    Mirzaei M; Zeinali A; Razmjoo A; Nazemi M
    J Biomech; 2009 Aug; 42(11):1584-91. PubMed ID: 19457486
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of bone distribution on vertebral strength: assessment with patient-specific nonlinear finite element analysis.
    Faulkner KG; Cann CE; Hasegawa BH
    Radiology; 1991 Jun; 179(3):669-74. PubMed ID: 2027972
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of the cortical structure in high resolution CT images of lumbar vertebrae by analysing low bone mineral density clusters and cortical profiles.
    Haidekker MA; Andresen R; Evertsz CJ; Banzer D; Peitgen HO
    Br J Radiol; 1997 Dec; 70(840):1222-8. PubMed ID: 9505840
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A patient-specific computer tomography-based finite element methodology to calculate the six dimensional stiffness matrix of human vertebral bodies.
    Chevalier Y; Zysset PK
    J Biomech Eng; 2012 May; 134(5):051006. PubMed ID: 22757494
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A finite element analysis of a T12 vertebra in two consecutive examinations to evaluate the progress of osteoporosis.
    Provatidis C; Vossou C; Petropoulou E; Balanika A; Lyritis G
    Med Eng Phys; 2009 Jul; 31(6):632-41. PubMed ID: 19186094
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Damage initiation sites in osteoporotic and normal human cancellous bone.
    Soicher MA; Wang X; Zauel RR; Fyhrie DP
    Bone; 2011 Mar; 48(3):663-6. PubMed ID: 21081188
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A biomechanical analysis of the effects of resorption cavities on cancellous bone strength.
    Hernandez CJ; Gupta A; Keaveny TM
    J Bone Miner Res; 2006 Aug; 21(8):1248-55. PubMed ID: 16869723
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measures of complexity for cancellous bone.
    Gowin W; Saparin PI; Kurths J; Felsenberg D
    Technol Health Care; 1998 Dec; 6(5-6):373-90. PubMed ID: 10100940
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A simulation study of marrow fat effect on bone biomechanics.
    Ma HT; Ren R; Chen Y; Griffith JF; Leung PC; Zhang P
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4030-3. PubMed ID: 25570876
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Loss of longitudinal superiority marks the microarchitecture deterioration of osteoporotic cancellous bones.
    Li Z; Liu P; Yuan Y; Liang X; Lei J; Zhu X; Zhang Z; Cai L
    Biomech Model Mechanobiol; 2021 Oct; 20(5):2013-2030. PubMed ID: 34309757
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of vertebral bone strength with a finite element method using low dose computed tomography imaging.
    Nakanowatari K; Watanabe K; Mori K; Nakajima S; Sekine N; Mutsuzaki H
    J Orthop Sci; 2022 May; 27(3):574-581. PubMed ID: 33962857
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Finite element analysis of the strain distribution in the humeral head tubercles during abduction: comparison of young and osteoporotic bone.
    Clavert P; Zerah M; Krier J; Mille P; Kempf JF; Kahn JL
    Surg Radiol Anat; 2006 Dec; 28(6):581-7. PubMed ID: 16937028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.