These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
952 related articles for article (PubMed ID: 19878901)
1. Development of biomedical porous titanium filled with medical polymer by in-situ polymerization of monomer solution infiltrated into pores. Nakai M; Niinomi M; Akahori T; Tsutsumi H; Itsuno S; Haraguchi N; Itoh Y; Ogasawara T; Onishi T; Shindoh T J Mech Behav Biomed Mater; 2010 Jan; 3(1):41-50. PubMed ID: 19878901 [TBL] [Abstract][Full Text] [Related]
2. Mechanical and biodegradable properties of porous titanium filled with poly-L-lactic acid by modified in situ polymerization technique. Nakai M; Niinomi M; Ishii D J Mech Behav Biomed Mater; 2011 Oct; 4(7):1206-18. PubMed ID: 21783129 [TBL] [Abstract][Full Text] [Related]
3. Variation of the mechanical properties of PMMA to suit osteoporotic cancellous bone. Boger A; Bisig A; Bohner M; Heini P; Schneider E J Biomater Sci Polym Ed; 2008; 19(9):1125-42. PubMed ID: 18727856 [TBL] [Abstract][Full Text] [Related]
4. Performance of vertebral cancellous bone augmented with compliant PMMA under dynamic loads. Boger A; Bohner M; Heini P; Schwieger K; Schneider E Acta Biomater; 2008 Nov; 4(6):1688-93. PubMed ID: 18678533 [TBL] [Abstract][Full Text] [Related]
5. Compatibilization by homopolymer: significant improvements in the modulus and tensile strength of PPC/PMMA blends by the addition of a small amount of PVAc. Li Y; Shimizu H ACS Appl Mater Interfaces; 2009 Aug; 1(8):1650-5. PubMed ID: 20355779 [TBL] [Abstract][Full Text] [Related]
6. High strength, low stiffness, porous NiTi with superelastic properties. Greiner C; Oppenheimer SM; Dunand DC Acta Biomater; 2005 Nov; 1(6):705-16. PubMed ID: 16701851 [TBL] [Abstract][Full Text] [Related]
7. Porous titanium materials with entangled wire structure for load-bearing biomedical applications. He G; Liu P; Tan Q J Mech Behav Biomed Mater; 2012 Jan; 5(1):16-31. PubMed ID: 22100076 [TBL] [Abstract][Full Text] [Related]
8. Mechanical biocompatibilities of titanium alloys for biomedical applications. Niinomi M J Mech Behav Biomed Mater; 2008 Jan; 1(1):30-42. PubMed ID: 19627769 [TBL] [Abstract][Full Text] [Related]
9. Bone marrow modified acrylic bone cement for augmentation of osteoporotic cancellous bone. Arens D; Rothstock S; Windolf M; Boger A J Mech Behav Biomed Mater; 2011 Nov; 4(8):2081-9. PubMed ID: 22098908 [TBL] [Abstract][Full Text] [Related]
10. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming. Hollander DA; von Walter M; Wirtz T; Sellei R; Schmidt-Rohlfing B; Paar O; Erli HJ Biomaterials; 2006 Mar; 27(7):955-63. PubMed ID: 16115681 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of TiO(2)-PMMA nanocomposite: using methacrylic acid as a coupling agent. Khaled SM; Sui R; Charpentier PA; Rizkalla AS Langmuir; 2007 Mar; 23(7):3988-95. PubMed ID: 17316031 [TBL] [Abstract][Full Text] [Related]
12. Porous TiNbZr alloy scaffolds for biomedical applications. Wang X; Li Y; Xiong J; Hodgson PD; Wen C Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597 [TBL] [Abstract][Full Text] [Related]
13. Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers. Khaled SM; Charpentier PA; Rizkalla AS J Biomater Appl; 2011 Feb; 25(6):515-37. PubMed ID: 20207779 [TBL] [Abstract][Full Text] [Related]
14. Microstructures and mechanical properties of metastable Ti-30Zr-(Cr, Mo) alloys with changeable Young's modulus for spinal fixation applications. Zhao X; Niinomi M; Nakai M; Miyamoto G; Furuhara T Acta Biomater; 2011 Aug; 7(8):3230-6. PubMed ID: 21569873 [TBL] [Abstract][Full Text] [Related]
15. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications. Hao YL; Li SJ; Sun SY; Zheng CY; Yang R Acta Biomater; 2007 Mar; 3(2):277-86. PubMed ID: 17234466 [TBL] [Abstract][Full Text] [Related]
16. Preparation and properties of biomedical porous titanium alloys by gelcasting. Yang D; Shao H; Guo Z; Lin T; Fan L Biomed Mater; 2011 Aug; 6(4):045010. PubMed ID: 21747152 [TBL] [Abstract][Full Text] [Related]
17. Processing and biocompatibility evaluation of laser processed porous titanium. Xue W; Krishna BV; Bandyopadhyay A; Bose S Acta Biomater; 2007 Nov; 3(6):1007-18. PubMed ID: 17627910 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the particle release of porous PMMA cements during curing. Beck S; Boger A Acta Biomater; 2009 Sep; 5(7):2503-7. PubMed ID: 19409868 [TBL] [Abstract][Full Text] [Related]
19. Modified PMMA cements for a hydrolysis resistant metal-polymer interface in orthopaedic applications. Gbureck U; Grübel S; Thull R; Barralet JE Acta Biomater; 2005 Nov; 1(6):671-6. PubMed ID: 16701848 [TBL] [Abstract][Full Text] [Related]
20. Effect of coupling agents on the local mechanical properties of bioactive dental composites by the nano-indentation technique. Ho E; Marcolongo M Dent Mater; 2005 Jul; 21(7):656-64. PubMed ID: 15978275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]