These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 19878950)

  • 1. Morphing methods to parameterize specimen-specific finite element model geometries.
    Sigal IA; Yang H; Roberts MD; Downs JC
    J Biomech; 2010 Jan; 43(2):254-62. PubMed ID: 19878950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesh-morphing algorithms for specimen-specific finite element modeling.
    Sigal IA; Hardisty MR; Whyne CM
    J Biomech; 2008; 41(7):1381-9. PubMed ID: 18397789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of the structural response of the femoral shaft under dynamic loading using subject-specific finite element models.
    Park G; Kim T; Forman J; Panzer MB; Crandall JR
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(11):1151-1166. PubMed ID: 28632407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur.
    Grassi L; Hraiech N; Schileo E; Ansaloni M; Rochette M; Viceconti M
    Med Eng Phys; 2011 Jan; 33(1):112-20. PubMed ID: 21036655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesh morphing and response surface analysis: quantifying sensitivity of vertebral mechanical behavior.
    Sigal IA; Whyne CM
    Ann Biomed Eng; 2010 Jan; 38(1):41-56. PubMed ID: 19859809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of a parametric finite element human femur model.
    Klein KF; Hu J; Reed MP; Schneider LW; Rupp JD
    Traffic Inj Prev; 2017 May; 18(4):420-426. PubMed ID: 28095035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subject-specific rib finite element models with material data derived from coupon tests under bending loading.
    Yates KM; Agnew AM; Albert DL; Kemper AR; Untaroiu CD
    J Mech Behav Biomed Mater; 2021 Apr; 116():104358. PubMed ID: 33610029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computed tomography landmark-based semi-automated mesh morphing and mapping techniques: generation of patient specific models of the human pelvis without segmentation.
    Salo Z; Beek M; Wright D; Whyne CM
    J Biomech; 2015 Apr; 48(6):1125-32. PubMed ID: 25680299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of computed tomography based parametric and patient-specific finite element models of the healthy and metastatic spine using a mesh-morphing algorithm.
    O'Reilly MA; Whyne CM
    Spine (Phila Pa 1976); 2008 Aug; 33(17):1876-81. PubMed ID: 18670341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of pelvic strain in different gait configurations in a validated cohort of computed tomography based finite element models.
    Salo Z; Beek M; Wright D; Maloul A; Whyne CM
    J Biomech; 2017 Nov; 64():120-130. PubMed ID: 29031524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of pelvic shape on strain patterns: A computational analysis using finite element mesh morphing techniques.
    Salo Z; Kreder H; Whyne CM
    J Biomech; 2021 Feb; 116():110207. PubMed ID: 33422723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanics of the rostrum in crocodilians: a comparative analysis using finite-element modeling.
    McHenry CR; Clausen PD; Daniel WJ; Meers MB; Pendharkar A
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Aug; 288(8):827-49. PubMed ID: 16835925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subject-specific finite element simulation of the human femur considering inhomogeneous material properties: a straightforward method and convergence study.
    Hölzer A; Schröder C; Woiczinski M; Sadoghi P; Scharpf A; Heimkes B; Jansson V
    Comput Methods Programs Biomed; 2013 Apr; 110(1):82-8. PubMed ID: 23084242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated finite element analysis of excised human femora based on precision -QCT.
    Merz B; Niederer P; Müller R; Rüegsegger P
    J Biomech Eng; 1996 Aug; 118(3):387-90. PubMed ID: 8872261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphing the feature-based multi-blocks of normative/healthy vertebral geometries to scoliosis vertebral geometries: development of personalized finite element models.
    Hadagali P; Peters JR; Balasubramanian S
    Comput Methods Biomech Biomed Engin; 2018 Mar; 21(4):297-324. PubMed ID: 29528253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Injury risk functions based on population-based finite element model responses: Application to femurs under dynamic three-point bending.
    Park G; Forman J; Kim T; Panzer MB; Crandall JR
    Traffic Inj Prev; 2018 Feb; 19(sup1):S59-S64. PubMed ID: 29584479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometric modeling of living tissue for subject-specific finite element analysis.
    Tada M; Yoshida H; Mochimaru M
    Conf Proc IEEE Eng Med Biol Soc; 2006; Suppl():6639-42. PubMed ID: 17959473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental validation of finite element model for proximal composite femur using optical measurements.
    Grassi L; Väänänen SP; Amin Yavari S; Weinans H; Jurvelin JS; Zadpoor AA; Isaksson H
    J Mech Behav Biomed Mater; 2013 May; 21():86-94. PubMed ID: 23510970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image-based vs. mesh-based statistical appearance models of the human femur: implications for finite element simulations.
    Bonaretti S; Seiler C; Boichon C; Reyes M; Büchler P
    Med Eng Phys; 2014 Dec; 36(12):1626-35. PubMed ID: 25271191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.