BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 19879262)

  • 1. The neural substrates for atypical planning and execution of word production in stuttering.
    Lu C; Chen C; Ning N; Ding G; Guo T; Peng D; Yang Y; Li K; Lin C
    Exp Neurol; 2010 Jan; 221(1):146-56. PubMed ID: 19879262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavioral effects arising from the neural substrates for atypical planning and execution of word production in stuttering.
    Howell P
    Exp Neurol; 2010 Sep; 225(1):55-9. PubMed ID: 20599979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of large-scale neural interactions for developmental stuttering.
    Lu C; Ning N; Peng D; Ding G; Li K; Yang Y; Lin C
    Neuroscience; 2009 Jul; 161(4):1008-26. PubMed ID: 19364522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered effective connectivity and anomalous anatomy in the basal ganglia-thalamocortical circuit of stuttering speakers.
    Lu C; Peng D; Chen C; Ning N; Ding G; Li K; Yang Y; Lin C
    Cortex; 2010 Jan; 46(1):49-67. PubMed ID: 19375076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of simulated stuttering and prolonged speech on the neural activation patterns of stuttering and nonstuttering adults.
    De Nil LF; Beal DS; Lafaille SJ; Kroll RM; Crawley AP; Gracco VL
    Brain Lang; 2008 Nov; 107(2):114-23. PubMed ID: 18822455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of external auditory pacing on the neural activity of stuttering speakers.
    Toyomura A; Fujii T; Kuriki S
    Neuroimage; 2011 Aug; 57(4):1507-16. PubMed ID: 21624474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The contribution of mesiofrontal cortex to the preparation and execution of repetitive syllable productions: an fMRI study.
    Brendel B; Hertrich I; Erb M; Lindner A; Riecker A; Grodd W; Ackermann H
    Neuroimage; 2010 Apr; 50(3):1219-30. PubMed ID: 20080191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The neural correlate of speech rhythm as evidenced by metrical speech processing.
    Geiser E; Zaehle T; Jancke L; Meyer M
    J Cogn Neurosci; 2008 Mar; 20(3):541-52. PubMed ID: 18004944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Severity of dysfluency correlates with basal ganglia activity in persistent developmental stuttering.
    Giraud AL; Neumann K; Bachoud-Levi AC; von Gudenberg AW; Euler HA; Lanfermann H; Preibisch C
    Brain Lang; 2008 Feb; 104(2):190-9. PubMed ID: 17531310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An fMRI investigation of syllable sequence production.
    Bohland JW; Guenther FH
    Neuroimage; 2006 Aug; 32(2):821-41. PubMed ID: 16730195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A PET study of the neural systems of stuttering.
    Fox PT; Ingham RJ; Ingham JC; Hirsch TB; Downs JH; Martin C; Jerabek P; Glass T; Lancaster JL
    Nature; 1996 Jul; 382(6587):158-61. PubMed ID: 8700204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain correlates of stuttering and syllable production: gender comparison and replication.
    Ingham RJ; Fox PT; Ingham JC; Xiong J; Zamarripa F; Hardies LJ; Lancaster JL
    J Speech Lang Hear Res; 2004 Apr; 47(2):321-41. PubMed ID: 15157133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of syllable onset complexity and syllable frequency on speech motor control.
    Riecker A; Brendel B; Ziegler W; Erb M; Ackermann H
    Brain Lang; 2008 Nov; 107(2):102-13. PubMed ID: 18294683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Memory effects of speech and gesture binding: cortical and hippocampal activation in relation to subsequent memory performance.
    Straube B; Green A; Weis S; Chatterjee A; Kircher T
    J Cogn Neurosci; 2009 Apr; 21(4):821-36. PubMed ID: 18578601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voxel-based morphometry of auditory and speech-related cortex in stutterers.
    Beal DS; Gracco VL; Lafaille SJ; De Nil LF
    Neuroreport; 2007 Aug; 18(12):1257-60. PubMed ID: 17632278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. fMRI reveals two distinct cerebral networks subserving speech motor control.
    Riecker A; Mathiak K; Wildgruber D; Erb M; Hertrich I; Grodd W; Ackermann H
    Neurology; 2005 Feb; 64(4):700-6. PubMed ID: 15728295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How the brain repairs stuttering.
    Kell CA; Neumann K; von Kriegstein K; Posenenske C; von Gudenberg AW; Euler H; Giraud AL
    Brain; 2009 Oct; 132(Pt 10):2747-60. PubMed ID: 19710179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Gray matter abnormalities in developmental stuttering determined with voxel-based morphometry].
    Song LP; Peng DL; Jin Z; Yao L; Ning N; Guo XJ; Zhang T
    Zhonghua Yi Xue Za Zhi; 2007 Nov; 87(41):2884-8. PubMed ID: 18261300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain activation abnormalities during speech and non-speech in stuttering speakers.
    Chang SE; Kenney MK; Loucks TM; Ludlow CL
    Neuroimage; 2009 May; 46(1):201-12. PubMed ID: 19401143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural interaction of speech and gesture: differential activations of metaphoric co-verbal gestures.
    Kircher T; Straube B; Leube D; Weis S; Sachs O; Willmes K; Konrad K; Green A
    Neuropsychologia; 2009 Jan; 47(1):169-79. PubMed ID: 18771673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.