BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

525 related articles for article (PubMed ID: 19879345)

  • 1. In vitro cytotoxicity and drug release properties of pH- and temperature-sensitive core-shell hydrogel microspheres.
    Ma L; Liu M; Liu H; Chen J; Cui D
    Int J Pharm; 2010 Jan; 385(1-2):86-91. PubMed ID: 19879345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel dual stimuli-responsive drug carrier biomaterial based on BSA/PVP polymers.
    Mao CW; Wang RM; Zhang HF; He YF; Tao JD; Ying XC
    J Control Release; 2011 Nov; 152 Suppl 1():e68-70. PubMed ID: 22195933
    [No Abstract]   [Full Text] [Related]  

  • 3. Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres.
    Dai Y; Ma P; Cheng Z; Kang X; Zhang X; Hou Z; Li C; Yang D; Zhai X; Lin J
    ACS Nano; 2012 Apr; 6(4):3327-38. PubMed ID: 22435911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-sensitive hydrogels based on bovine serum albumin for oral drug delivery.
    Iemma F; Spizzirri UG; Puoci F; Muzzalupo R; Trombino S; Cassano R; Leta S; Picci N
    Int J Pharm; 2006 Apr; 312(1-2):151-7. PubMed ID: 16490328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Psyllium and copolymers of 2-hydroxylethylmethacrylate and acrylamide-based novel devices for the use in colon specific antibiotic drug delivery.
    Singh B; Chauhan N; Kumar S; Bala R
    Int J Pharm; 2008 Mar; 352(1-2):74-80. PubMed ID: 18055144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and caffeine release from Fe3O4/P(MAA-co-NVP) magnetic microspheres with controllable core-shell architecture.
    Di HW; Luo YL; Xu F; Chen YS; Nan YF
    J Biomater Sci Polym Ed; 2011; 22(4-6):557-76. PubMed ID: 21144259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro characterization of vascular endothelial growth factor and dexamethasone releasing hydrogels for implantable probe coatings.
    Norton LW; Tegnell E; Toporek SS; Reichert WM
    Biomaterials; 2005 Jun; 26(16):3285-97. PubMed ID: 15603824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grafted thermo-responsive gelatin microspheres as delivery systems in triggered drug release.
    Curcio M; Gianfranco Spizzirri U; Iemma F; Puoci F; Cirillo G; Parisi OI; Picci N
    Eur J Pharm Biopharm; 2010 Sep; 76(1):48-55. PubMed ID: 20580821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile synthesis of pH sensitive polymer-coated mesoporous silica nanoparticles and their application in drug delivery.
    Tang H; Guo J; Sun Y; Chang B; Ren Q; Yang W
    Int J Pharm; 2011 Dec; 421(2):388-96. PubMed ID: 22001840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The release dynamics of model drugs from the psyllium and N-hydroxymethylacrylamide based hydrogels.
    Singh B; Chauhan GS; Sharma DK; Kant A; Gupta I; Chauhan N
    Int J Pharm; 2006 Nov; 325(1-2):15-25. PubMed ID: 16844329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The robustness and flexibility of an emulsion solvent evaporation method to prepare pH-responsive microparticles.
    Nilkumhang S; Basit AW
    Int J Pharm; 2009 Jul; 377(1-2):135-41. PubMed ID: 19515519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, swelling and drug-release behaviour of a poly(N,N-diethylacrylamide-co-(2-dimethylamino) ethyl methacrylate) hydrogel.
    Chen J; Liu M; Chen W; Zhang N; Zhu S; Zhang S; Xiong Y
    J Biomater Sci Polym Ed; 2011; 22(8):1049-68. PubMed ID: 20594406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the type of release medium on drug release from PLGA-based microparticles: experiment and theory.
    Faisant N; Akiki J; Siepmann F; Benoit JP; Siepmann J
    Int J Pharm; 2006 May; 314(2):189-97. PubMed ID: 16510257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiation crosslinked polymerization of methacrylamide and psyllium to develop antibiotic drug delivery device.
    Singh B; Sharma V; Kumar A; Kumar S
    Int J Biol Macromol; 2009 Nov; 45(4):338-47. PubMed ID: 19665476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucosamine-carrying temperature- and pH-sensitive microgels: preparation, characterization, and in vitro drug release studies.
    Teng D; Hou J; Zhang X; Wang X; Wang Z; Li C
    J Colloid Interface Sci; 2008 Jun; 322(1):333-41. PubMed ID: 18417145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dependence of copolymer composition, swelling history, and drug concentration on the loading of diltiazem hydrochloride (DIL.HCl) into poly[(N-isopropylacrylamide)-co-(methacrylic acid)] hydrogels and its release behaviour from hydrogel slabs.
    Sousa RG; Prior-Cabanillas A; Quijada-Garrido I; Barrales-Rienda JM
    J Control Release; 2005 Feb; 102(3):595-606. PubMed ID: 15681082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The characteristics of spontaneously forming physically cross-linked hydrogels composed of two water-soluble phospholipid polymers for oral drug delivery carrier I: hydrogel dissolution and insulin release under neutral pH condition.
    Nam K; Watanabe J; Ishihara K
    Eur J Pharm Sci; 2004 Nov; 23(3):261-70. PubMed ID: 15489127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of colloidal microgels as a (trans)dermal drug delivery system.
    Lopez VC; Hadgraft J; Snowden MJ
    Int J Pharm; 2005 Mar; 292(1-2):137-47. PubMed ID: 15725560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(MAA-co-AN) hydrogels with improved mechanical properties for theophylline controlled delivery.
    Luo Y; Zhang K; Wei Q; Liu Z; Chen Y
    Acta Biomater; 2009 Jan; 5(1):316-27. PubMed ID: 18723415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermosensitive poly(N-isopropylacrylamide-co-glycidyl methacrylate) microgels for controlled drug release.
    Li P; Xu R; Wang W; Li X; Xu Z; Yeung KW; Chu PK
    Colloids Surf B Biointerfaces; 2013 Jan; 101():251-5. PubMed ID: 23010027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.