These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 19879376)

  • 21. Correction of confounding bias in non-randomized studies by appropriate weighting.
    Schmoor C; Gall C; Stampf S; Graf E
    Biom J; 2011 Mar; 53(2):369-87. PubMed ID: 21308726
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The compliance score as a regressor in randomized trials.
    Joffe MM; Ten Have TR; Brensinger C
    Biostatistics; 2003 Jul; 4(3):327-40. PubMed ID: 12925501
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Model misspecification and robustness in causal inference: comparing matching with doubly robust estimation.
    Waernbaum I
    Stat Med; 2012 Jul; 31(15):1572-81. PubMed ID: 22359267
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Five interval estimators for proportion ratio under a stratified randomized clinical trial with noncompliance.
    Lui KJ; Chang KC
    Biom J; 2007 Aug; 49(4):613-26. PubMed ID: 17634977
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Testing homogeneity of the risk ratio in stratified noncompliance randomized trials.
    Lui KJ
    Contemp Clin Trials; 2007 Sep; 28(5):614-25. PubMed ID: 17409026
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On a preference-based instrumental variable approach in reducing unmeasured confounding-by-indication.
    Li Y; Lee Y; Wolfe RA; Morgenstern H; Zhang J; Port FK; Robinson BM
    Stat Med; 2015 Mar; 34(7):1150-68. PubMed ID: 25546152
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Causal inference methods to assess safety upper bounds in randomized trials with noncompliance.
    Wang Y; Berlin JA; Pinheiro J; Wilcox MA
    Clin Trials; 2015 Jun; 12(3):265-75. PubMed ID: 25733675
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-parametric bounds on treatment effects with non-compliance by covariate adjustment.
    Cai Z; Kuroki M; Sato T
    Stat Med; 2007 Jul; 26(16):3188-204. PubMed ID: 17136775
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Causal inference in paired two-arm experimental studies under noncompliance with application to prognosis of myocardial infarction.
    Bartolucci F; Farcomeni A
    Stat Med; 2013 Nov; 32(25):4348-66. PubMed ID: 23754710
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Instrumental variables: application and limitations.
    Martens EP; Pestman WR; de Boer A; Belitser SV; Klungel OH
    Epidemiology; 2006 May; 17(3):260-7. PubMed ID: 16617274
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimation of treatment effect adjusting for treatment changes using the intensity score method: application to a large primary prevention study for coronary events (MEGA study).
    Tanaka Y; Matsuyama Y; Ohashi Y;
    Stat Med; 2008 May; 27(10):1718-33. PubMed ID: 17922525
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensitivity analysis of intention-to-treat estimates when withdrawals are related to unobserved compliance status.
    Salim A; Mackinnon A; Griffiths K
    Stat Med; 2008 Apr; 27(8):1164-79. PubMed ID: 17724782
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficiency and robustness of causal effect estimators when noncompliance is measured with error.
    Boatman JA; Vock DM; Koopmeiners JS
    Stat Med; 2018 Dec; 37(28):4126-4141. PubMed ID: 30109713
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Model misspecification sensitivity analysis in estimating causal effects of interventions with non-compliance.
    Jo B
    Stat Med; 2002 Nov; 21(21):3161-81. PubMed ID: 12375297
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence from nonrandomized studies: a case study on the estimation of causal effects.
    Schmoor C; Caputo A; Schumacher M
    Am J Epidemiol; 2008 May; 167(9):1120-9. PubMed ID: 18334500
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interpreting treatment-effect estimates with heterogeneity and choice: simulation model results.
    Brooks JM; Fang G
    Clin Ther; 2009 Apr; 31(4):902-19. PubMed ID: 19446162
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved estimation of controlled direct effects in the presence of unmeasured confounding of intermediate variables.
    Kaufman S; Kaufman JS; MacLehose RF; Greenland S; Poole C
    Stat Med; 2005 Jun; 24(11):1683-702. PubMed ID: 15742358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of the risk difference, risk ratio and odds ratio scales for quantifying the unadjusted intervention effect in cluster randomized trials.
    Ukoumunne OC; Forbes AB; Carlin JB; Gulliford MC
    Stat Med; 2008 Nov; 27(25):5143-55. PubMed ID: 18613226
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Methods to adjust for bias and confounding in critical care health services research involving observational data.
    Wunsch H; Linde-Zwirble WT; Angus DC
    J Crit Care; 2006 Mar; 21(1):1-7. PubMed ID: 16616616
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discussion of "Identifiability and estimation of causal effects in randomized trials with noncompliance and completely nonignorable missing data".
    Small DS; Cheng J
    Biometrics; 2009 Sep; 65(3):682-6; discussion 689-91. PubMed ID: 18759846
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.