These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 19880241)

  • 1. Estimating tree bole volume using artificial neural network models for four species in Turkey.
    Ozçelik R; Diamantopoulou MJ; Brooks JR; Wiant HV
    J Environ Manage; 2010; 91(3):742-53. PubMed ID: 19880241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Storage versus substrate limitation to bole respiratory potential in two coniferous tree species of contrasting sapwood width.
    Pruyn ML; Gartner BL; Harmon ME
    J Exp Bot; 2005 Oct; 56(420):2637-49. PubMed ID: 16118257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volume interpolation of CT images from tree trunks.
    Zu Castell W; Schrödl S; Seifert T
    Plant Biol (Stuttg); 2005 Nov; 7(6):737-44. PubMed ID: 16388478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 13C-isotopic fingerprint of Pinus pinaster Ait. and Pinus sylvestris L. wood related to the quality of standing tree mass in forests from NW Spain.
    Fernandez I; González-Prieto SJ; Cabaneiro A
    Rapid Commun Mass Spectrom; 2005; 19(22):3199-206. PubMed ID: 16208761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stem respiratory potential in six softwood and four hardwood tree species in the central cascades of Oregon.
    Pruyn ML; Harmon ME; Gartner BL
    Oecologia; 2003 Sep; 137(1):10-21. PubMed ID: 12844251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spray deposition from ground-based applications of carbaryl to protect individual trees from bark beetle attack.
    Fettig CJ; Munson AS; McKelvey SR; Bush PB; Borys RR
    J Environ Qual; 2008; 37(3):1170-9. PubMed ID: 18453436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-volume modeling of Eucalyptus trees using regression and artificial neural networks.
    de Azevedo GB; Tomiazzi HV; Azevedo GTOS; Teodoro LPR; Teodoro PE; de Souza MTP; Batista TS; de Jesus Eufrade-Junior H; Guerra SPS
    PLoS One; 2020; 15(9):e0238703. PubMed ID: 32915871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional analysis of the anatomical growth response of European conifers to mechanical disturbance.
    Schneuwly DM; Stoffel M; Dorren LK; Berger F
    Tree Physiol; 2009 Oct; 29(10):1247-57. PubMed ID: 19696053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Mathematical models for calculating volume growth, represented by the yield tables for the principal wood-producing species of Czechoslovakia].
    Smelko S
    Gegenbaurs Morphol Jahrb; 1979; 125(5):661-8. PubMed ID: 551000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear and nonlinear ARMA model parameter estimation using an artificial neural network.
    Chon KH; Cohen RJ
    IEEE Trans Biomed Eng; 1997 Mar; 44(3):168-74. PubMed ID: 9216130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique.
    Dogan E; Sengorur B; Koklu R
    J Environ Manage; 2009 Feb; 90(2):1229-35. PubMed ID: 18691805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The predictive and explanatory power of inductive decision trees: a comparison with artificial neural network learning as applied to the noninvasive diagnosis of coronary artery disease.
    Silver DL; Hurwitz GA
    J Investig Med; 1997 Feb; 45(2):99-108. PubMed ID: 9084580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of bladder outlet obstruction in men with lower urinary tract symptoms using artificial neural networks.
    Sonke GS; Heskes T; Verbeek AL; de la Rosette JJ; Kiemeney LA
    J Urol; 2000 Jan; 163(1):300-5. PubMed ID: 10604380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the electrophoretic mobility of analytes in binary solvent electrolyte systems in capillary electrophoresis using an artificial neural network.
    Jouyban A; Majidi MR; Altria KD; Clark BJ; Asadpour-Zeynali K
    Pharmazie; 2005 Sep; 60(9):656-60. PubMed ID: 16222863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification and identification of mosquito species using artificial neural networks.
    Banerjee AK; Kiran K; Murty US; Venkateswarlu Ch
    Comput Biol Chem; 2008 Dec; 32(6):442-7. PubMed ID: 18838305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multivariate multilevel nonlinear mixed effects models for timber yield predictions.
    Hall DB; Clutter M
    Biometrics; 2004 Mar; 60(1):16-24. PubMed ID: 15032769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of fungal diseases, site and stand characteristics in mixed stands in Ilgaz-Yenice forest district, Cankiri, Turkey.
    Oner N; Dogan HH; Ozturk C; Gurer M
    J Environ Biol; 2009 Jul; 30(4):567-75. PubMed ID: 20120498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of chemical resistance of dental ceramics by neural network.
    Zivko-Babić J; Lisjak D; Curković L; Jakovac M
    Dent Mater; 2008 Jan; 24(1):18-27. PubMed ID: 17397915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the intracellular water compartment using artificial neural network analysis.
    Mohamed EI; Maiolo C; Linder R; Pöppl SJ; De Lorenzo A
    Acta Diabetol; 2003 Oct; 40 Suppl 1():S15-8. PubMed ID: 14618426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sanio's laws revisited. Size-dependent changes in the xylem architecture of trees.
    Mencuccini M; Hölttä T; Petit G; Magnani F
    Ecol Lett; 2007 Nov; 10(11):1084-93. PubMed ID: 17850336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.