BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 1988036)

  • 1. Metabolism of unusual membrane phospholipids in the marine sponge Microciona prolifera.
    Lam WK; Beatty MF; Hahn S; Djerassi C
    Biochemistry; 1991 Jan; 30(2):372-7. PubMed ID: 1988036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid remodeling of arachidonate from phosphatidylcholine to phosphatidylethanolamine pools during mast cell activation.
    Fonteh AN; Chilton FH
    J Immunol; 1992 Mar; 148(6):1784-91. PubMed ID: 1541818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phospholipid studies of marine organisms: new branched fatty acids from Strongylophora durissima.
    Dasgupta A; Ayanoglu E; Djerassi C
    Lipids; 1984 Oct; 19(10):768-76. PubMed ID: 6503622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of modification of membrane phospholipid composition on phospholipid methylation in aggregating cell culture.
    Dainous F; Kanfer JN
    J Neurochem; 1986 Jun; 46(6):1859-64. PubMed ID: 3701334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acid and phospholipid selectivity of different phospholipase A2 enzymes studied by using a mammalian membrane as substrate.
    Diez E; Chilton FH; Stroup G; Mayer RJ; Winkler JD; Fonteh AN
    Biochem J; 1994 Aug; 301 ( Pt 3)(Pt 3):721-6. PubMed ID: 8053897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of membrane phosphatidylethanolamine-deficiency/phosphatidylcholine-excess on the metabolism of phosphatidylcholine and phosphatidylethanolamine.
    Fisk HA; Kano-Sueoka T
    J Cell Physiol; 1992 Dec; 153(3):589-95. PubMed ID: 1447319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of hepatic phosphatidylcholine synthesis in the developing guinea pig: contributions of acyl remodelling and of N-methylation of phosphatidylethanolamine.
    Burdge GC; Kelly FJ; Postle AD
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):67-73. PubMed ID: 8439299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of 1-acyl-2-oleoyl-sn-glycero-3-phosphoethanolamine in castor oil biosynthesis.
    Lin JT; Lew KM; Chen JM; Iwasaki Y; McKeon TA
    Lipids; 2000 May; 35(5):481-6. PubMed ID: 10907782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ha-ras-transformation alters the metabolism of phosphatidylethanolamine and phosphatidylcholine in NIH 3T3 fibroblasts.
    Momchilova A; Markovska T; Pankov R
    Cell Biol Int; 1999; 23(9):603-10. PubMed ID: 10728571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for a different metabolism of PC and PE in shoots and roots.
    Hocquellet A; Joubès J; Perret AM; Lessire R; Moreau P
    Plant Physiol Biochem; 2005; 43(10-11):938-46. PubMed ID: 16325411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unusual pattern of fatty acid biosynthesis. Evidence for C-19 desaturase activity in freshwater sponges.
    Hahn S; Lam WK; Wu I; Silva CJ; Djerassi C
    J Biol Chem; 1989 Dec; 264(35):21043-6. PubMed ID: 2592364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporation of free fatty acids can explain alterations in the molecular species composition of phosphatidylcholine and phosphatidylethanolamine in human erythrocytes as induced by Plasmodium falciparum.
    Simões AP; Roelofsen B; Op den Kamp JA
    Cell Biol Int Rep; 1992 Jun; 16(6):533-45. PubMed ID: 1327542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Enhancement of membrane phospholipid breakdown and synthesis during phagocytosis in cultured chick retinal pigment epithelial cells].
    Nakashima S; Tsunematsu Y; Nozawa Y
    Nippon Ganka Gakkai Zasshi; 1989 Jan; 93(1):142-8. PubMed ID: 2750599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unusual C24, C25, C26 and C27 polyunsaturated fatty acids of the marine sponge Microciona prolifera.
    Morales RW; Litchfield C
    Biochim Biophys Acta; 1976 May; 431(2):206-16. PubMed ID: 938649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phospholipase C activities in rat liver plasma membranes depend on the phospholipid composition.
    Momchilova-Pankova AB; Markovska TT; Yanev EI; Koumanov KS
    J Lipid Mediat Cell Signal; 1994 May; 9(3):235-46. PubMed ID: 7921783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulus-response coupling in marine sponge cell aggregation: lipid metabolism and the function of exogenously added arachidonic and docosahexaenoic acids.
    Weissmann G; Riesen W; Davidson S; Waite M
    Biochim Biophys Acta; 1988 Jun; 960(3):351-64. PubMed ID: 2968121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Individual molecular species of phosphatidylcholine and phosphatidylethanolamine in myelin turn over at different rates.
    Ousley AH; Morell P
    J Biol Chem; 1992 May; 267(15):10362-9. PubMed ID: 1587822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Turnover of eicosanoid precursor fatty acids among phospholipid classes and subclasses of cultured human umbilical vein endothelial cells.
    Takayama H; Kroll MH; Gimbrone MA; Schafer AI
    Biochem J; 1989 Mar; 258(2):427-34. PubMed ID: 2495792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phospholipid acyl chain rotational dynamics are independent of headgroup structure in unilamellar vesicles containing binary mixtures of dioleoyl-phosphatidylcholine and dioleoyl-phosphatidylethanolamine.
    Hunter GW; Squier TC
    Biochim Biophys Acta; 1998 Dec; 1415(1):63-76. PubMed ID: 9858687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elevated whole muscle phosphatidylcholine: phosphatidylethanolamine ratio coincides with reduced SERCA activity in murine overloaded plantaris muscles.
    Fajardo VA; Mikhaeil JS; Leveille CF; Tupling AR; LeBlanc PJ
    Lipids Health Dis; 2018 Mar; 17(1):47. PubMed ID: 29534725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.