These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 1988048)
1. Molecular structure of an apolipoprotein determined at 2.5-A resolution. Breiter DR; Kanost MR; Benning MM; Wesenberg G; Law JH; Wells MA; Rayment I; Holden HM Biochemistry; 1991 Jan; 30(3):603-8. PubMed ID: 1988048 [TBL] [Abstract][Full Text] [Related]
2. Insertion of apoLp-III into a lipid monolayer is more favorable for saturated, more ordered, acyl-chains. Rathnayake SS; Mirheydari M; Schulte A; Gillahan JE; Gentit T; Phillips AN; Okonkwo RK; Burger KN; Mann EK; Vaknin D; Bu W; Agra-Kooijman DM; Kooijman EE Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):482-92. PubMed ID: 24099741 [TBL] [Abstract][Full Text] [Related]
3. Insight into lipid surface recognition and reversible conformational adaptations of an exchangeable apolipoprotein by multidimensional heteronuclear NMR techniques. Wang J; Gagné SM; Sykes BD; Ryan RO J Biol Chem; 1997 Jul; 272(29):17912-20. PubMed ID: 9218415 [TBL] [Abstract][Full Text] [Related]
4. Fluorescence spectroscopy of single tryptophan mutants of apolipophorin-III in discoidal lipoproteins of dimyristoylphosphatidylcholine. Soulages JL; Arrese EL Biochemistry; 2000 Aug; 39(34):10574-80. PubMed ID: 10956049 [TBL] [Abstract][Full Text] [Related]
5. Differentiation of lipid-associating helices by use of three-dimensional molecular hydrophobicity potential calculations. Brasseur R J Biol Chem; 1991 Aug; 266(24):16120-7. PubMed ID: 1714906 [TBL] [Abstract][Full Text] [Related]
7. Role of buried polar residues in helix bundle stability and lipid binding of apolipophorin III: destabilization by threonine 31. Weers PM; Abdullahi WE; Cabrera JM; Hsu TC Biochemistry; 2005 Jun; 44(24):8810-6. PubMed ID: 15952787 [TBL] [Abstract][Full Text] [Related]
8. Molecular modeling of the amphipathic helices of the plasma apolipoproteins. Brasseur R; Lins L; Vanloo B; Ruysschaert JM; Rosseneu M Proteins; 1992 Jul; 13(3):246-57. PubMed ID: 1603813 [TBL] [Abstract][Full Text] [Related]
9. Conformational changes of an exchangeable apolipoprotein, apolipophorin III from Locusta migratoria, at low pH: correlation with lipid binding. Weers PM; Kay CM; Ryan RO Biochemistry; 2001 Jun; 40(25):7754-60. PubMed ID: 11412130 [TBL] [Abstract][Full Text] [Related]
10. Essential role of the conformational flexibility of helices 1 and 5 on the lipid binding activity of apolipophorin-III. Soulages JL; Arrese EL; Chetty PS; Rodriguez V J Biol Chem; 2001 Sep; 276(36):34162-6. PubMed ID: 11443139 [TBL] [Abstract][Full Text] [Related]
11. Role of helices and loops in the ability of apolipophorin-III to interact with native lipoproteins and form discoidal lipoprotein complexes. Chetty PS; Arrese EL; Rodriguez V; Soulages JL Biochemistry; 2003 Dec; 42(51):15061-7. PubMed ID: 14690415 [TBL] [Abstract][Full Text] [Related]
12. The helical hydrophobic moment: a measure of the amphiphilicity of a helix. Eisenberg D; Weiss RM; Terwilliger TC Nature; 1982 Sep; 299(5881):371-4. PubMed ID: 7110359 [TBL] [Abstract][Full Text] [Related]
13. Spectroscopic and lipid binding studies on the amino and carboxyl terminal fragments of Locusta migratoria apolipophorin III. Narayanaswami V; Weers PM; Bogerd J; Kooiman FP; Kay CM; Scraba DG; Van der Horst DJ; Ryan RO Biochemistry; 1995 Sep; 34(37):11822-30. PubMed ID: 7547916 [TBL] [Abstract][Full Text] [Related]
14. Interaction of model class A1, class A2, and class Y amphipathic helical peptides with membranes. Mishra VK; Palgunachari MN Biochemistry; 1996 Aug; 35(34):11210-20. PubMed ID: 8780526 [TBL] [Abstract][Full Text] [Related]
15. Factors affecting the stability and conformation of Locusta migratoria apolipophorin III. Weers PM; Kay CM; Oikawa K; Wientzek M; Van der Horst DJ; Ryan RO Biochemistry; 1994 Mar; 33(12):3617-24. PubMed ID: 8142360 [TBL] [Abstract][Full Text] [Related]
16. Primary structure of apolipophorin-III from the migratory locust, Locusta migratoria. Potential amphipathic structures and molecular evolution of an insect apolipoprotein. Kanost MR; Boguski MS; Freeman M; Gordon JI; Wyatt GR; Wells MA J Biol Chem; 1988 Aug; 263(22):10568-73. PubMed ID: 3392027 [TBL] [Abstract][Full Text] [Related]
17. Exchangeable apolipoproteins of insects share a common structural motif. Smith AF; Owen LM; Strobel LM; Chen H; Kanost MR; Hanneman E; Wells MA J Lipid Res; 1994 Nov; 35(11):1976-84. PubMed ID: 7868976 [TBL] [Abstract][Full Text] [Related]
18. Conformational flexibility in the apolipoprotein E amino-terminal domain structure determined from three new crystal forms: implications for lipid binding. Segelke BW; Forstner M; Knapp M; Trakhanov SD; Parkin S; Newhouse YM; Bellamy HD; Weisgraber KH; Rupp B Protein Sci; 2000 May; 9(5):886-97. PubMed ID: 10850798 [TBL] [Abstract][Full Text] [Related]
19. Conformational characteristics of peptides and unanticipated results from crystal structure analyses. Karle IL Biopolymers; 1989 Jan; 28(1):1-14. PubMed ID: 2720096 [TBL] [Abstract][Full Text] [Related]
20. Plasma-desorption mass spectrometry as an aid in protein sequence determination. Application of the method on a cuticular protein from the migratory locust (Locusta migratoria). Klarskov K; Højrup P; Andersen SO; Roepstorff P Biochem J; 1989 Sep; 262(3):923-30. PubMed ID: 2590176 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]