These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 19880517)
1. Role of two strictly conserved residues in nucleotide flipping and N-glycosylic bond cleavage by human thymine DNA glycosylase. Maiti A; Morgan MT; Drohat AC J Biol Chem; 2009 Dec; 284(52):36680-36688. PubMed ID: 19880517 [TBL] [Abstract][Full Text] [Related]
2. Dependence of substrate binding and catalysis on pH, ionic strength, and temperature for thymine DNA glycosylase: Insights into recognition and processing of G·T mispairs. Maiti A; Drohat AC DNA Repair (Amst); 2011 May; 10(5):545-53. PubMed ID: 21474392 [TBL] [Abstract][Full Text] [Related]
3. Stoichiometry and affinity for thymine DNA glycosylase binding to specific and nonspecific DNA. Morgan MT; Maiti A; Fitzgerald ME; Drohat AC Nucleic Acids Res; 2011 Mar; 39(6):2319-29. PubMed ID: 21097883 [TBL] [Abstract][Full Text] [Related]
4. Excision of 5-hydroxymethyluracil and 5-carboxylcytosine by the thymine DNA glycosylase domain: its structural basis and implications for active DNA demethylation. Hashimoto H; Hong S; Bhagwat AS; Zhang X; Cheng X Nucleic Acids Res; 2012 Nov; 40(20):10203-14. PubMed ID: 22962365 [TBL] [Abstract][Full Text] [Related]
5. Structural basis of damage recognition by thymine DNA glycosylase: Key roles for N-terminal residues. Coey CT; Malik SS; Pidugu LS; Varney KM; Pozharski E; Drohat AC Nucleic Acids Res; 2016 Dec; 44(21):10248-10258. PubMed ID: 27580719 [TBL] [Abstract][Full Text] [Related]
6. Excision of 5-halogenated uracils by human thymine DNA glycosylase. Robust activity for DNA contexts other than CpG. Morgan MT; Bennett MT; Drohat AC J Biol Chem; 2007 Sep; 282(38):27578-86. PubMed ID: 17602166 [TBL] [Abstract][Full Text] [Related]
7. E2-mediated small ubiquitin-like modifier (SUMO) modification of thymine DNA glycosylase is efficient but not selective for the enzyme-product complex. Coey CT; Fitzgerald ME; Maiti A; Reiter KH; Guzzo CM; Matunis MJ; Drohat AC J Biol Chem; 2014 May; 289(22):15810-9. PubMed ID: 24753249 [TBL] [Abstract][Full Text] [Related]
8. Lesion processing by a repair enzyme is severely curtailed by residues needed to prevent aberrant activity on undamaged DNA. Maiti A; Noon MS; MacKerell AD; Pozharski E; Drohat AC Proc Natl Acad Sci U S A; 2012 May; 109(21):8091-6. PubMed ID: 22573813 [TBL] [Abstract][Full Text] [Related]
9. Thymine DNA glycosylase exhibits negligible affinity for nucleobases that it removes from DNA. Malik SS; Coey CT; Varney KM; Pozharski E; Drohat AC Nucleic Acids Res; 2015 Oct; 43(19):9541-52. PubMed ID: 26358812 [TBL] [Abstract][Full Text] [Related]
10. Defining the Role of Nucleotide Flipping in Enzyme Specificity Using Dow BJ; Malik SS; Drohat AC J Am Chem Soc; 2019 Mar; 141(12):4952-4962. PubMed ID: 30841696 [TBL] [Abstract][Full Text] [Related]
11. Base-flipping dynamics from an intrahelical to an extrahelical state exerted by thymine DNA glycosylase during DNA repair process. Da LT; Yu J Nucleic Acids Res; 2018 Jun; 46(11):5410-5425. PubMed ID: 29762710 [TBL] [Abstract][Full Text] [Related]
12. The thymine-DNA glycosylase regulatory domain: residual structure and DNA binding. Smet-Nocca C; Wieruszeski JM; Chaar V; Leroy A; Benecke A Biochemistry; 2008 Jun; 47(25):6519-30. PubMed ID: 18512959 [TBL] [Abstract][Full Text] [Related]
13. SUMO-1 regulates the conformational dynamics of thymine-DNA Glycosylase regulatory domain and competes with its DNA binding activity. Smet-Nocca C; Wieruszeski JM; Léger H; Eilebrecht S; Benecke A BMC Biochem; 2011 Feb; 12():4. PubMed ID: 21284855 [TBL] [Abstract][Full Text] [Related]
14. Role of base excision repair in maintaining the genetic and epigenetic integrity of CpG sites. Bellacosa A; Drohat AC DNA Repair (Amst); 2015 Aug; 32():33-42. PubMed ID: 26021671 [TBL] [Abstract][Full Text] [Related]
15. Excision of 5-Carboxylcytosine by Thymine DNA Glycosylase. Pidugu LS; Dai Q; Malik SS; Pozharski E; Drohat AC J Am Chem Soc; 2019 Nov; 141(47):18851-18861. PubMed ID: 31693361 [TBL] [Abstract][Full Text] [Related]
16. Activity and crystal structure of human thymine DNA glycosylase mutant N140A with 5-carboxylcytosine DNA at low pH. Hashimoto H; Zhang X; Cheng X DNA Repair (Amst); 2013 Jul; 12(7):535-40. PubMed ID: 23680598 [TBL] [Abstract][Full Text] [Related]
17. Dynamics of the excised base release in thymine DNA glycosylase during DNA repair process. Da LT; Shi Y; Ning G; Yu J Nucleic Acids Res; 2018 Jan; 46(2):568-581. PubMed ID: 29253232 [TBL] [Abstract][Full Text] [Related]
18. Biochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA. Moréra S; Grin I; Vigouroux A; Couvé S; Henriot V; Saparbaev M; Ishchenko AA Nucleic Acids Res; 2012 Oct; 40(19):9917-26. PubMed ID: 22848106 [TBL] [Abstract][Full Text] [Related]
19. Association of Dnmt3a and thymine DNA glycosylase links DNA methylation with base-excision repair. Li YQ; Zhou PZ; Zheng XD; Walsh CP; Xu GL Nucleic Acids Res; 2007; 35(2):390-400. PubMed ID: 17175537 [TBL] [Abstract][Full Text] [Related]
20. Defining the impact of sumoylation on substrate binding and catalysis by thymine DNA glycosylase. Coey CT; Drohat AC Nucleic Acids Res; 2018 Jun; 46(10):5159-5170. PubMed ID: 29660017 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]