BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 19880517)

  • 1. Role of two strictly conserved residues in nucleotide flipping and N-glycosylic bond cleavage by human thymine DNA glycosylase.
    Maiti A; Morgan MT; Drohat AC
    J Biol Chem; 2009 Dec; 284(52):36680-36688. PubMed ID: 19880517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence of substrate binding and catalysis on pH, ionic strength, and temperature for thymine DNA glycosylase: Insights into recognition and processing of G·T mispairs.
    Maiti A; Drohat AC
    DNA Repair (Amst); 2011 May; 10(5):545-53. PubMed ID: 21474392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stoichiometry and affinity for thymine DNA glycosylase binding to specific and nonspecific DNA.
    Morgan MT; Maiti A; Fitzgerald ME; Drohat AC
    Nucleic Acids Res; 2011 Mar; 39(6):2319-29. PubMed ID: 21097883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excision of 5-hydroxymethyluracil and 5-carboxylcytosine by the thymine DNA glycosylase domain: its structural basis and implications for active DNA demethylation.
    Hashimoto H; Hong S; Bhagwat AS; Zhang X; Cheng X
    Nucleic Acids Res; 2012 Nov; 40(20):10203-14. PubMed ID: 22962365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis of damage recognition by thymine DNA glycosylase: Key roles for N-terminal residues.
    Coey CT; Malik SS; Pidugu LS; Varney KM; Pozharski E; Drohat AC
    Nucleic Acids Res; 2016 Dec; 44(21):10248-10258. PubMed ID: 27580719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excision of 5-halogenated uracils by human thymine DNA glycosylase. Robust activity for DNA contexts other than CpG.
    Morgan MT; Bennett MT; Drohat AC
    J Biol Chem; 2007 Sep; 282(38):27578-86. PubMed ID: 17602166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. E2-mediated small ubiquitin-like modifier (SUMO) modification of thymine DNA glycosylase is efficient but not selective for the enzyme-product complex.
    Coey CT; Fitzgerald ME; Maiti A; Reiter KH; Guzzo CM; Matunis MJ; Drohat AC
    J Biol Chem; 2014 May; 289(22):15810-9. PubMed ID: 24753249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lesion processing by a repair enzyme is severely curtailed by residues needed to prevent aberrant activity on undamaged DNA.
    Maiti A; Noon MS; MacKerell AD; Pozharski E; Drohat AC
    Proc Natl Acad Sci U S A; 2012 May; 109(21):8091-6. PubMed ID: 22573813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thymine DNA glycosylase exhibits negligible affinity for nucleobases that it removes from DNA.
    Malik SS; Coey CT; Varney KM; Pozharski E; Drohat AC
    Nucleic Acids Res; 2015 Oct; 43(19):9541-52. PubMed ID: 26358812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defining the Role of Nucleotide Flipping in Enzyme Specificity Using
    Dow BJ; Malik SS; Drohat AC
    J Am Chem Soc; 2019 Mar; 141(12):4952-4962. PubMed ID: 30841696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Base-flipping dynamics from an intrahelical to an extrahelical state exerted by thymine DNA glycosylase during DNA repair process.
    Da LT; Yu J
    Nucleic Acids Res; 2018 Jun; 46(11):5410-5425. PubMed ID: 29762710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The thymine-DNA glycosylase regulatory domain: residual structure and DNA binding.
    Smet-Nocca C; Wieruszeski JM; Chaar V; Leroy A; Benecke A
    Biochemistry; 2008 Jun; 47(25):6519-30. PubMed ID: 18512959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SUMO-1 regulates the conformational dynamics of thymine-DNA Glycosylase regulatory domain and competes with its DNA binding activity.
    Smet-Nocca C; Wieruszeski JM; Léger H; Eilebrecht S; Benecke A
    BMC Biochem; 2011 Feb; 12():4. PubMed ID: 21284855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of base excision repair in maintaining the genetic and epigenetic integrity of CpG sites.
    Bellacosa A; Drohat AC
    DNA Repair (Amst); 2015 Aug; 32():33-42. PubMed ID: 26021671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excision of 5-Carboxylcytosine by Thymine DNA Glycosylase.
    Pidugu LS; Dai Q; Malik SS; Pozharski E; Drohat AC
    J Am Chem Soc; 2019 Nov; 141(47):18851-18861. PubMed ID: 31693361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity and crystal structure of human thymine DNA glycosylase mutant N140A with 5-carboxylcytosine DNA at low pH.
    Hashimoto H; Zhang X; Cheng X
    DNA Repair (Amst); 2013 Jul; 12(7):535-40. PubMed ID: 23680598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of the excised base release in thymine DNA glycosylase during DNA repair process.
    Da LT; Shi Y; Ning G; Yu J
    Nucleic Acids Res; 2018 Jan; 46(2):568-581. PubMed ID: 29253232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA.
    Moréra S; Grin I; Vigouroux A; Couvé S; Henriot V; Saparbaev M; Ishchenko AA
    Nucleic Acids Res; 2012 Oct; 40(19):9917-26. PubMed ID: 22848106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association of Dnmt3a and thymine DNA glycosylase links DNA methylation with base-excision repair.
    Li YQ; Zhou PZ; Zheng XD; Walsh CP; Xu GL
    Nucleic Acids Res; 2007; 35(2):390-400. PubMed ID: 17175537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining the impact of sumoylation on substrate binding and catalysis by thymine DNA glycosylase.
    Coey CT; Drohat AC
    Nucleic Acids Res; 2018 Jun; 46(10):5159-5170. PubMed ID: 29660017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.