These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 19880519)
1. Oncogenic BRAFV600E induces expression of neuronal differentiation marker MAP2 in melanoma cells by promoter demethylation and down-regulation of transcription repressor HES1. Maddodi N; Bhat KM; Devi S; Zhang SC; Setaluri V J Biol Chem; 2010 Jan; 285(1):242-54. PubMed ID: 19880519 [TBL] [Abstract][Full Text] [Related]
2. Transcriptional regulation of human MAP2 gene in melanoma: role of neuronal bHLH factors and Notch1 signaling. Bhat KM; Maddodi N; Shashikant C; Setaluri V Nucleic Acids Res; 2006; 34(13):3819-32. PubMed ID: 16916793 [TBL] [Abstract][Full Text] [Related]
3. Microtubule-associated protein 2, a marker of neuronal differentiation, induces mitotic defects, inhibits growth of melanoma cells, and predicts metastatic potential of cutaneous melanoma. Soltani MH; Pichardo R; Song Z; Sangha N; Camacho F; Satyamoorthy K; Sangueza OP; Setaluri V Am J Pathol; 2005 Jun; 166(6):1841-50. PubMed ID: 15920168 [TBL] [Abstract][Full Text] [Related]
4. Potential role of 5-aza-2'-deoxycytidine induced MAGE-A4 expression in immunotherapy for anaplastic thyroid cancer. Gunda V; Cogdill AP; Bernasconi MJ; Wargo JA; Parangi S Surgery; 2013 Dec; 154(6):1456-62; discussion 1462. PubMed ID: 24238058 [TBL] [Abstract][Full Text] [Related]
5. Aberrant hypermethylation of the HOXD10 gene in papillary thyroid cancer with BRAFV600E mutation. Cao YM; Gu J; Zhang YS; Wei WJ; Qu N; Wen D; Liao T; Shi RL; Zhang L; Ji QH; Wang Y; Sun GH; Zhao YX; Wang YJ; Yu J; Zhu YX Oncol Rep; 2018 Jan; 39(1):338-348. PubMed ID: 29115628 [TBL] [Abstract][Full Text] [Related]
6. Frequent alterations of Ras signaling pathway genes in sporadic malignant melanomas. Reifenberger J; Knobbe CB; Sterzinger AA; Blaschke B; Schulte KW; Ruzicka T; Reifenberger G Int J Cancer; 2004 Apr; 109(3):377-84. PubMed ID: 14961576 [TBL] [Abstract][Full Text] [Related]
7. The BRAF(V600E) causes widespread alterations in gene methylation in the genome of melanoma cells. Hou P; Liu D; Dong J; Xing M Cell Cycle; 2012 Jan; 11(2):286-95. PubMed ID: 22189819 [TBL] [Abstract][Full Text] [Related]
8. Antitumor efficacy of the novel RAF inhibitor GDC-0879 is predicted by BRAFV600E mutational status and sustained extracellular signal-regulated kinase/mitogen-activated protein kinase pathway suppression. Hoeflich KP; Herter S; Tien J; Wong L; Berry L; Chan J; O'Brien C; Modrusan Z; Seshagiri S; Lackner M; Stern H; Choo E; Murray L; Friedman LS; Belvin M Cancer Res; 2009 Apr; 69(7):3042-51. PubMed ID: 19276360 [TBL] [Abstract][Full Text] [Related]
9. Whole-transcriptomic Profile of SK-MEL-3 Melanoma Cells Treated with the Histone Deacetylase Inhibitor: Trichostatin A. Mazzio EA; Soliman KFA Cancer Genomics Proteomics; 2018; 15(5):349-364. PubMed ID: 30194076 [TBL] [Abstract][Full Text] [Related]
10. In-depth genomic data analyses revealed complex transcriptional and epigenetic dysregulations of BRAFV600E in melanoma. Guo X; Xu Y; Zhao Z Mol Cancer; 2015 Mar; 14():60. PubMed ID: 25890285 [TBL] [Abstract][Full Text] [Related]
14. Epigenetic silencing of TET2 and TET3 induces an EMT-like process in melanoma. Gong F; Guo Y; Niu Y; Jin J; Zhang X; Shi X; Zhang L; Li R; Chen L; Ma RZ Oncotarget; 2017 Jan; 8(1):315-328. PubMed ID: 27852070 [TBL] [Abstract][Full Text] [Related]
15. The BRAF(V600E) inhibitor, PLX4032, increases type I collagen synthesis in melanoma cells. Jenkins MH; Croteau W; Mullins DW; Brinckerhoff CE Matrix Biol; 2015 Oct; 48():66-77. PubMed ID: 25989506 [TBL] [Abstract][Full Text] [Related]
16. The transcription cofactor c-JUN mediates phenotype switching and BRAF inhibitor resistance in melanoma. Ramsdale R; Jorissen RN; Li FZ; Al-Obaidi S; Ward T; Sheppard KE; Bukczynska PE; Young RJ; Boyle SE; Shackleton M; Bollag G; Long GV; Tulchinsky E; Rizos H; Pearson RB; McArthur GA; Dhillon AS; Ferrao PT Sci Signal; 2015 Aug; 8(390):ra82. PubMed ID: 26286024 [TBL] [Abstract][Full Text] [Related]
17. Cisplatin-induced synthetic lethality to arginine-starvation therapy by transcriptional suppression of ASS1 is regulated by DEC1, HIF-1α, and c-Myc transcription network and is independent of ASS1 promoter DNA methylation. Long Y; Tsai WB; Chang JT; Estecio M; Wangpaichitr M; Savaraj N; Feun LG; Chen HH; Kuo MT Oncotarget; 2016 Dec; 7(50):82658-82670. PubMed ID: 27765932 [TBL] [Abstract][Full Text] [Related]
18. Neurotrophins facilitate neuronal differentiation of cultured neural stem cells via induction of mRNA expression of basic helix-loop-helix transcription factors Mash1 and Math1. Ito H; Nakajima A; Nomoto H; Furukawa S J Neurosci Res; 2003 Mar; 71(5):648-58. PubMed ID: 12584723 [TBL] [Abstract][Full Text] [Related]
19. Regulation of ERK3/MAPK6 expression by BRAF. Hoeflich KP; Eby MT; Forrest WF; Gray DC; Tien JY; Stern HM; Murray LJ; Davis DP; Modrusan Z; Seshagiri S Int J Oncol; 2006 Oct; 29(4):839-49. PubMed ID: 16964379 [TBL] [Abstract][Full Text] [Related]
20. Eicosapentaenoic acid activates RAS/ERK/C/EBPβ pathway through H-Ras intron 1 CpG island demethylation in U937 leukemia cells. Ceccarelli V; Nocentini G; Billi M; Racanicchi S; Riccardi C; Roberti R; Grignani F; Binaglia L; Vecchini A PLoS One; 2014; 9(1):e85025. PubMed ID: 24454781 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]