BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 19881357)

  • 1. On the use of adjusted cross-sectional estimators of HIV incidence.
    Wang R; Lagakos SW
    J Acquir Immune Defic Syndr; 2009 Dec; 52(5):538-47. PubMed ID: 19881357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of biomarker based incidence estimators.
    McWalter TA; Welte A
    PLoS One; 2009 Oct; 4(10):e7368. PubMed ID: 19809505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Augmented cross-sectional studies with abbreviated follow-up for estimating HIV incidence.
    Claggett B; Lagakos SW; Wang R
    Biometrics; 2012 Mar; 68(1):62-74. PubMed ID: 21668904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical considerations for cross-sectional HIV incidence estimation based on recency test.
    Gao F; Bannick M
    Stat Med; 2022 Apr; 41(8):1446-1461. PubMed ID: 34984710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New testing strategy to detect early HIV-1 infection for use in incidence estimates and for clinical and prevention purposes.
    Janssen RS; Satten GA; Stramer SL; Rawal BD; O'Brien TR; Weiblen BJ; Hecht FM; Jack N; Cleghorn FR; Kahn JO; Chesney MA; Busch MP
    JAMA; 1998 Jul; 280(1):42-8. PubMed ID: 9660362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Should biomarker estimates of HIV incidence be adjusted?
    Brookmeyer R
    AIDS; 2009 Feb; 23(4):485-91. PubMed ID: 19165087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new general biomarker-based incidence estimator.
    Kassanjee R; McWalter TA; Bärnighausen T; Welte A
    Epidemiology; 2012 Sep; 23(5):721-8. PubMed ID: 22627902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Augmented cross-sectional prevalence testing for estimating HIV incidence.
    Wang R; Lagakos SW
    Biometrics; 2010 Sep; 66(3):864-74. PubMed ID: 19912174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of the sensitive/less-sensitive (detuned) EIA strategy for targeting genetic analysis of HIV-1 to recently infected blood donors.
    Machado DM; Delwart EL; Diaz RS; de Oliveira CF; Alves K; Rawal BD; Sullivan M; Gwinn M; Clark KA; Busch MP
    AIDS; 2002 Jan; 16(1):113-9. PubMed ID: 11741169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevalence estimation when disease status is verified only among test positives: Applications in HIV screening programs.
    G Thomas E; B Peskoe S; Spiegelman D
    Stat Med; 2018 Mar; 37(7):1101-1114. PubMed ID: 29230839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parametric likelihood inference for interval censored competing risks data.
    Hudgens MG; Li C; Fine JP
    Biometrics; 2014 Mar; 70(1):1-9. PubMed ID: 24400873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximum-likelihood estimation of relatedness.
    Milligan BG
    Genetics; 2003 Mar; 163(3):1153-67. PubMed ID: 12663552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and Evaluation of a Modified Fourth-Generation Human Immunodeficiency Virus Enzyme Immunoassay for Cross-Sectional Incidence Estimation in Clade B Populations.
    Kirkpatrick AR; Patel EU; Celum CL; Moore RD; Blankson JN; Mehta SH; Kirk GD; Margolick JB; Quinn TC; Eshleman SH; Laeyendecker O
    AIDS Res Hum Retroviruses; 2016 Aug; 32(8):756-62. PubMed ID: 26988426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid report on estimating incidence from cross-sectional data.
    DeMonte JB; Neilan AM; Loop MS; Ciaranello AL; Hudgens MG
    Ann Epidemiol; 2021 Jan; 53():106-108.e1. PubMed ID: 32979470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new method for estimating HIV incidence from a single cross-sectional survey.
    Fellows IE; Shiraishi RW; Cherutich P; Achia T; Young PW; Kim AA
    PLoS One; 2020; 15(8):e0237221. PubMed ID: 32785257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using a network-based approach and targeted maximum likelihood estimation to evaluate the effect of adding pre-exposure prophylaxis to an ongoing test-and-treat trial.
    Balzer L; Staples P; Onnela JP; DeGruttola V
    Clin Trials; 2017 Apr; 14(2):201-210. PubMed ID: 28124579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient estimation of human immunodeficiency virus incidence rate using a pooled cross-sectional cohort study design.
    Molebatsi K; Gabaitiri L; Mokgatlhe L; Moyo S; Gaseitsiwe S; Wirth KE; DeGruttola V; Tchetgen Tchetgen E
    Stat Med; 2020 Oct; 39(24):3255-3271. PubMed ID: 32875624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Markov model for HIV disease progression including the effect of HIV diagnosis and treatment: application to AIDS prediction in England and Wales.
    Aalen OO; Farewell VT; De Angelis D; Day NE; Gill ON
    Stat Med; 1997 Oct; 16(19):2191-210. PubMed ID: 9330428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An enhanced cross-sectional HIV incidence estimator that incorporates prior HIV test results.
    Bannick M; Donnell D; Hayes R; Laeyendecker O; Gao F
    Stat Med; 2024 May; ():. PubMed ID: 38803064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of conditional bias-adjusted estimators for interim analysis in clinical trials with survival data.
    Shimura M; Gosho M; Hirakawa A
    Stat Med; 2017 Jun; 36(13):2067-2080. PubMed ID: 28211076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.