These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 19881630)

  • 1. Femtosecond laser fabrication of microfluidic channels for organic photonic devices.
    Chaitanya Vishnubhatla K; Clark J; Lanzani G; Ramponi R; Osellame R; Virgili T
    Appl Opt; 2009 Nov; 48(31):G114-8. PubMed ID: 19881630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Smart" polymeric microfluidics fabricated by plasma processing: controlled wetting, capillary filling and hydrophobic valving.
    Tsougeni K; Papageorgiou D; Tserepi A; Gogolides E
    Lab Chip; 2010 Feb; 10(4):462-9. PubMed ID: 20126686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses.
    Kim M; Hwang DJ; Jeon H; Hiromatsu K; Grigoropoulos CP
    Lab Chip; 2009 Jan; 9(2):311-8. PubMed ID: 19107290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection.
    Crespi A; Gu Y; Ngamsom B; Hoekstra HJ; Dongre C; Pollnau M; Ramponi R; van den Vlekkert HH; Watts P; Cerullo G; Osellame R
    Lab Chip; 2010 May; 10(9):1167-73. PubMed ID: 20390136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and characterization of poly(methyl methacrylate) microchannels by in situ polymerization with a novel metal template.
    Chen Z; Gao Y; Su R; Li C; Lin J
    Electrophoresis; 2003 Sep; 24(18):3246-52. PubMed ID: 14518052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-speed multiphoton absorption polymerization: fabrication of microfluidic channels with arbitrary cross-sections and high aspect ratios.
    Kumi G; Yanez CO; Belfield KD; Fourkas JT
    Lab Chip; 2010 Apr; 10(8):1057-60. PubMed ID: 20358114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices.
    Wabuyele MB; Ford SM; Stryjewski W; Barrow J; Soper SA
    Electrophoresis; 2001 Oct; 22(18):3939-48. PubMed ID: 11700724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and validation of a multi-channel type microfluidic chip for electrokinetic streaming potential devices.
    Chun MS; Shim MS; Choi NW
    Lab Chip; 2006 Feb; 6(2):302-9. PubMed ID: 16450042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass.
    Hanada Y; Sugioka K; Kawano H; Ishikawa IS; Miyawaki A; Midorikawa K
    Biomed Microdevices; 2008 Jun; 10(3):403-10. PubMed ID: 18080201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Straightforward 3D hydrodynamic focusing in femtosecond laser fabricated microfluidic channels.
    Paiè P; Bragheri F; Vazquez RM; Osellame R
    Lab Chip; 2014 Jun; 14(11):1826-33. PubMed ID: 24740611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capillarity induced solvent-actuated bonding of polymeric microfluidic devices.
    Shah JJ; Geist J; Locascio LE; Gaitan M; Rao MV; Vreeland WN
    Anal Chem; 2006 May; 78(10):3348-53. PubMed ID: 16689536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvent-resistant photocurable liquid fluoropolymers for microfluidic device fabrication [corrected].
    Rolland JP; Van Dam RM; Schorzman DA; Quake SR; DeSimone JM
    J Am Chem Soc; 2004 Mar; 126(8):2322-3. PubMed ID: 14982433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser.
    Bragheri F; Ferrara L; Bellini N; Vishnubhatla KC; Minzioni P; Ramponi R; Osellame R; Cristiani I
    J Biophotonics; 2010 Apr; 3(4):234-43. PubMed ID: 20301123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of femtosecond laser written optical waveguides in a lab-on-chip.
    Vazquez RM; Osellame R; Nolli D; Dongre C; van den Vlekkert H; Ramponi R; Pollnau M; Cerullo G
    Lab Chip; 2009 Jan; 9(1):91-6. PubMed ID: 19209340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ fabrication of macroporous polymer networks within microfluidic devices by living radical photopolymerization and leaching.
    Simms HM; Brotherton CM; Good BT; Davis RH; Anseth KS; Bowman CN
    Lab Chip; 2005 Feb; 5(2):151-7. PubMed ID: 15672128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple and rapid methods for the fabrication of polymeric and glass chips for using in analytical chemistry.
    Sorouraddin MH; Amjadi M; Safi-Shalamzari M
    Anal Chim Acta; 2007 Apr; 589(1):84-8. PubMed ID: 17397657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile single step fabrication of microchannels with varying size.
    Asthana A; Kim KO; Perumal J; Kim DM; Kim DP
    Lab Chip; 2009 Apr; 9(8):1138-42. PubMed ID: 19350097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multilayer soft lithography of perfluoropolyether based elastomer for microfluidic device fabrication.
    Devaraju NS; Unger MA
    Lab Chip; 2011 Jun; 11(11):1962-7. PubMed ID: 21503367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrofluidics fabricated by space-selective metallization in glass microfluidic structures using femtosecond laser direct writing.
    Xu J; Wu D; Hanada Y; Chen C; Wu S; Cheng Y; Sugioka K; Midorikawa K
    Lab Chip; 2013 Dec; 13(23):4608-16. PubMed ID: 24104603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of discontinuous surface patterns within microfluidic channels using photodefinable vapor-based polymer coatings.
    Chen HY; Lahann J
    Anal Chem; 2005 Nov; 77(21):6909-14. PubMed ID: 16255589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.